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Abstract. Initiators of open innovation processes involving customers or 

employees often face vast amounts of idea proposals. These proposals vary 

greatly in terms of quality, which is why organizers often engage the users 

themselves in the evaluation process. Building on the concept of information 

overload, we evaluate the effects of three distinct rating scales on users’ activity 

and frustration measures. On the basis of an open innovation campaign for 

employees of a public-private institution in Germany, we systematically compare 

the novel “bag of lemons” method with conventional Likert scales and up-down-

voting schemes. Our results demonstrate that the “bag of lemons”-approach 

yields higher levels of user activity, but is also perceived as significantly more 

frustrating. We find this effect to be fully mediated by perceived information 

overload, which points to potential avenues for the design of stimulating yet 

tolerably complex Information Systems for open innovation and rating 

techniques. 
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1 Introduction 

From strategic planning to product innovation, small and large firms as well as other 

organizations are involving their employees and stakeholders to propose novel ideas 

through digital platforms [1–3]. These processes are sometimes strictly limited to 

participation within the company or part of a larger open innovation campaign, 

including customers, suppliers, and other interested parties [4, 5]. Regardless of their 

target group, these platforms all have in common that users face vast amounts of 

proposals of varying quality, but only a few can or even should be implemented [2, 6]. 

Hence, there is a strong need for group decision support systems (GDSS) that enable 

users to filter ideas appropriately [7], i.e., that achieve high accuracy in identifying the 

best ideas and avoid to expose users to the adverse effects of information overload, 

including frustration and disengagement [8, 9]. 
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Accordingly, there exists a myriad of filtering techniques. On the one hand, these 

include complex approaches such as prediction markets [10, 11], or automated methods 

like text mining that initially require a lot of human oversight and implementation 

capacity [12]. On the other hand, approaches like voting and user ratings are easier to 

implement and widespread on various online platforms. For instance, many social 

media and community platforms offer simple up- and down-voting (e.g., Reddit, Quora, 

Stackoverflow, etc.) or up-voting only (e.g., Facebook and Yammer in the form of 

“Likes”). Other platforms use Likert scales, often in form of star-ratings (e.g., Amazon, 

Airbnb, etc.). Yet, these methods face inherent shortcomings, including biased 

distributions [13], limited accuracy due to oversimplification, a possible disconnect 

between the goals of process organizers and raters, as well as reduced user satisfaction 

[14–16]. In this vein, the video platform YouTube dropped its Likert scale rating system 

in 2009 as users mostly rated content as either very bad or very good – rarely using any 

measures in the middle of the 5-point scale. Since then, the platform switched to up- 

and down-voting [17]. 

Seeking to address some of the shortcomings of existing approaches, Klein and 

Garcia [7] proposed a novel method. Their so-called “bag of lemons” (BOL) approach 

lets users in evaluation tasks allocate a predefined amount of lemons to those ideas they 

consider to be the worst. A lemon thus represents a negative assessment and a user can 

allocate multiple, indeed up to all of her lemons to one single idea. This way, the crowd 

is assumed to flag bad ideas, supposedly identifying a (remaining) set of high quality 

ideas. In fact, the BOL method outperformed Likert scales in terms of time for task 

completion and accuracy [7]. To follow up on these first auspicious insights, this paper 

systematically assesses the characteristics of the BOL method in comparison to up-

/down voting and (conventional) Likert scales. In doing so, we focus on two factors. 

First, as crowd-based schemes rely on the laws of large numbers and the quality of 

collaborative evaluations usually increases in the number of independent assessments 

[18], we consider user activity under the three mentioned rating method regimes. 

Second, as crowd-based approaches typically work on a voluntary basis and hence 

require a positive user attitude and engagement [10, 19, 20], we consider the – 

potentially detrimental – effects on frustration as a key indicator of a non-positive 

attitude and user disengagement [20]. Such motivational variables are widely perceived 

as a crucial factor for user acceptance and usage of information systems [21, 22]. In this 

sense, this research is motivated by the following key drivers: First of all, there exists 

a clear research gap as BOL represents a novel method and its role in contrast to 

established methods is still unclear. However, organizations increasingly seek to 

involve their employees, citizens, or members in decision making in order to increase 

content, loyalty, identification, and productivity – often using those very collaborative 

voting techniques [23]. In consequence, as accruing informational charges grow 

constantly, such methods may expose participants to excessive informational load, 

yielding undesired results such as frustration, disaffection, and disengagement [8]. 

To connect the different rating methods with our target variables, we hence base our 

research on two intermediate, explanatory factors. First, as the BOL method represents 

a novel and commonly unknown rating technique, we consider the factor of perceived 

novelty, capturing potential user deterrence by the unknown, or a lack of 
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comprehensibility. Second, as BOL requires users to deal with a host of informational 

bits and pieces, information overload may be a concern. It was shown to yield adverse 

effects on employees as they are exposed to ever-growing amounts of unrestricted and 

unfiltered data [8, 9]. Accordingly, in this study, we pose the following overarching 

research questions: 

RQ1: How does the “Bag of Lemons” rating method affect user activity and 

frustration in a collaborative evaluation task? 

RQ2: Which role do perceived novelty and information overload play in mediating 

these effects? 

To address our research questions, we conduct an online-based field experiment, 

including the collection of survey data. As part of a real world open innovation 

campaign, employees of a private-public institution rated the idea proposals of their 

peers. We systematically vary rating method, using up-/down voting, Likert scales [24] 

and the BOL method [7]. We investigate the ramifications for user activity, frustration 

[20], and task completion time, taking into account the factors perceived novelty and 

information overload [8]. Exceeding previous studies [7, 15, 20], users in this scenario 

were not forced to rate all ideas, which promises a more realistic situation and novel 

findings. In consequence, this study makes three main contributions to the Information 

Systems (IS) literature. First, we evaluate a novel, thus hardly researched method of 

idea evaluation (BOL) in comparison to more established methods (Likert scales, up-

/down voting) in terms of the important indicators user activity and frustration, which 

has not or only scarcely been assessed by extant literature. By integrating these 

opposing factors within a joint research model, we enhance the understanding of 

collaborative evaluation processes in view of differentiated rating regimes [5, 25, 26]. 

Second, by relating these key indicators to mediating factors, we provide starting points 

for understanding how the different rating methods affect the users’ perceptions and 

behaviors. In particular, we identify perceived information overload as a potential 

mediating factor at play. Third, our study provides a show case of employee-driven 

innovation [27] and computer-supported organizational participation [28]. 

This paper is organized as follows. We outline related work and the theoretical 

background in Section 2. Section 3 then illustrates our study design. Section 4 presents 

the results of our study. Lastly, we discuss our findings in view of theoretical and 

practical implications, limitations, and starting points for future research in Section 5. 

2 Theoretical Background and Related Work 

In recent years, the IS literature has begun to systematically evaluate ways to exploit 

the wisdom of the crowd, including a broad strand of research on open innovation 

processes [5, 29]. Notably, a number of studies analyzed voting and rating techniques 

on open innovation contests [7, 10, 15, 20, 30]. Such approaches relate to GDSS in the 

sense that groups evaluate proposals which were generated by the group itself, which 

can have important ramifications due to personal or social attachment, preoccupation, 

and other biases [31, 32]. With the emergence of large-scale open innovation contests, 
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IS research revived its investigation of rating scales. Several studies in this line of 

research evaluated both quality and task completion time with regard to different rating 

techniques [15, 20, 30, 33, 34]. In this section, we describe the theoretical background 

of the concepts and factors that form the basis of our study. We begin with a brief 

introduction of open innovation contests. 

 

2.1 Open Innovation 

Adamczyk et al. [5] define open innovation contests as IT-based and time-limited 

competitions by individuals or organizations calling on the general public or a specific 

target group to propose innovative solutions. Thereby the organizers make use of the 

expertise, skills, and creativity of distributed crowds. Engaging employees and 

customers in open innovation processes can have several benefits for the organizers, 

including increased loyalty, brand image, and success in recruitment [35]. For an open 

innovation contest to be successful, previous research identified a number of factors. 

Organizers, for instance, need to express a sense of urgency and establish a trusted 

environment [14, 36]. Moreover, users might be motivated by gaining access to the 

knowledge of experts as well as receiving appreciation for their input by peers and 

organizers of the process [37]. Furthermore, extant research also established that 

collaborative tools drive increase the quality of results in open innovation engagements 

[23]. 

Recently, several leading IT corporations engaged both their customers and 

employees in open innovation contests. For instance, IBM’s “Innovation Jam” resulted 

in 46,000 product ideas proposed by 150,000 participants [1], while users in Dell’s 

ongoing “IdeaStorm” have generated more than 20,000 suggestions for product 

improvements thus far [6]. Open innovation contests among employees of a company 

are one application of employee-driven innovation [27, 28]. In the broader context of 

computer-supported organizational participation, these contests can be a way to 

actively provide employees the means to be part of the decision-making processes of 

their workplace, which was found to be related to increased employee commitment and 

productivity [28]. 

Considering the vast amount of ideas, it becomes more likely that an open innovation 

contest will produce more superior solutions than an innovation process limited to only 

few innovators [38]. Thus, in line with the “wisdom of the crowds” paradigm, some 

user-generated ideas are able to compete with expert or core inside innovators [15, 25, 

39]. However, assessing these crowd proposals can be costly. Robinson and Schroeder 

[40] estimate that large corporations take about four hours working time and $500 just 

to evaluate one idea. Yet, only few ideas are really worth increased attention. Prior 

research established that open innovation processes tend to produce large idea 

collections that are highly redundant and greatly vary in terms of quality [2, 20, 33, 39], 

where only 10-30% of the ideas tend to be of good or high quality [33]. Put figuratively, 

large-scale open innovation processes create excellent needles. They do, however, also 

create the corresponding haystacks. The main challenge then is to identify the valuable 

propositions. One common solution to this problem is to engage users in the evaluation 

process using voting and rating techniques [7, 10, 15, 20, 30, 34]. 
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2.2 Rating Scales, Attitudes, and Intrinsic Motivation 

The usage of rating scales transforms the process of idea evaluation into a concrete 

task of judgment, where individuals consider a finite set of alternatives [10]. In effect, 

this enables the organizers of open innovation contests to reduce their costs for idea 

evaluation by basing decisions on aggregated user ratings. 

However, the gathered data may depend on the specific rating scale. Prior research 

suggests that rating scales are prone to selection biases and other dysfunctionalities [7, 

10, 15, 20, 30, 33, 34]. For instance, some researchers claim that rating scales often fail 

to properly distinguish between medium/good and excellent ideas [7, 34]. Moreover, 

there may occur discrepancies between the initiator’s and the participants’ goals and 

intentions. While initiators would like the participants to evaluate as many ideas as 

possible thoroughly, the latter are restricted both in terms of time and information 

available to them. Hence, organizers need to take potential factors such as non-interest, 

distractions, lack of knowledge, and workload into account [7, 20]. In consequence, 

they need to communicate clearly what, why, and how they would like their participants 

to do specifically. 

Nonetheless, evaluation tasks are often described poorly and hence remain fuzzy. 

The rating scale itself hence become an important factor as participants are searching 

for potential cues [41]. In fact, participants tend to develop attitudes toward rating 

scales based on characteristics such as graphical elements and input variables [10, 19, 

20]. Attitudes, in turn, can affect cognition and behavior [42]. In this context, Riedl et 

al. [20] found that users perceive different rating scales as more or less exciting, 

entertaining, satisfying, and positive, which can be explained by flow theory [43], 

suggesting that people can become very immersed by an activity, accompanied by high 

concentration on a task, while losing self-consciousness. Koufaris [44] suggested that 

flow states are related to increased intrinsic enjoyment and perceived control. Both 

constructs are also related to intrinsic motivation [45]. IS research established intrinsic 

motivation to be an important factor in creating favorable user perceptions, intention, 

and actual system use [21, 22]. In contrast, all too simple or overwhelmingly complex 

systems may deter users from entering such states, rendering system use a frustrating 

experience which is in consequence unlikely to be continued. Several potential 

antecedents of frustration come to mind. Given the structure of evaluation tasks with 

many diverse ideas, information overload is a concern which we further outline in the 

next paragraphs. 

 

2.3 Information Overload 

Information overload can be characterized as a state in which cognitive processing 

capacity is exceeded by the volume and speed of incoming stimuli that need to be 

processed [8]. People continuously evaluate their usage of information systems and 

discontinue usage when experiencing techno stress [46]. For instance, Maier et al. [47] 

found that users stop using social network services when experiencing, among other 

factors, exhausting levels of information disclosures by friends leading to information 

overload. Koroleva et al. [48] found similar results for Facebook and Eckhardt el. [49] 
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did so, asking participants in an experiment on LinkedIn to extract specific information 

for a job application. The phenomenon of information overload might be especially 

pronounced in open innovation evaluation tasks as users need to process a manifold, 

diverse, partly contradicting, and often novel set of ideas. Aggravatingly, the proposers 

usually do not follow a common schema, style, or language in describing their ideas. 

Comparing ideas across one another may hence be particular challenging. 

Depending on the structure of the rating scale and evaluation task, perceived 

information load may thus differ [8]. It has, however, not been investigated with regard 

to rating scales in IS studies thus far. In the following, we hence describe a design 

allowing to relate users’ perceptions of information overload to different rating 

methods, forming the basis of the field experiment reported in this paper. 

3 Experimental Design 

In this section, we outline an approach to address our research questions. Similar to 

Klein and Garcia [7], our study is based on an (internal) open innovation campaign at 

an actual private-public research center. Both the ideation as well as the evaluation 

phase were part of a broader participatory process at this institution [28]. The institution 

is legally incorporated as a foundation, disposes over a yearly budget of approximately 

€14 million, and employs a total of 280 people. Employees work on a variety of projects 

in the domains of computer science, information technology, robotics, and engineering.  

Our study employs a two-staged approach. In the first stage, employees of this 

institution were invited to propose ideas on how to make the research center an (even 

better) employer via an online system. We invited all employees to this online platform. 

In the second stage, all employees were invited again to rate the ideas in a condensed 

set, using either BOL, up- and down-voting, or Likert scales. 

 

3.1 Stage 1: Idea Generation 

Employees of the institution were asked to propose ideas on how to make the center 

an (even better) employer. In a first phase, we received a total of 71 “raw” proposals. 

Before proceeding to the second stage, we eliminated hoax and proposals not compliant 

with the terms of use (e.g., including clear names of employees or foul language), 

consolidated redundant proposals, redacted grammatical and other language- and style-

related issues, and in consequence, generated a condensed and workable idea corpus of 

42 proposals. The proposals covered a wide range of topics, addressing organizational 

procedures, marketing, human resources, and many other areas. In this first stage, 

participants were able to propose ideas within a range of two weeks. Ideas were 

generally posted anonymously in order to both comply with German data protection 

legislation and to enable employees to speak their mind freely [50, 51]. 

 

3.2 Stage 2: Idea Evaluation 

In the second stage, employees were then invited to rate their peers’ proposals on 

another online platform. This platform was accessible for two weeks, too. Here, each 
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employee could participate only once. Participants were prompted to assess the ideas’ 

overall quality, which may be based on subcategories such novelty, feasibility, or value 

to the company [15, 20, 30, 39]. Note, however, that these sub-dimensions were not 

surveyed separately. In fact, idea evaluation was based on either bag of lemons, up- and 

down voting, or Likert scales. 

Each participant was allocated to only one of the three treatment conditions 

(between-subjects design). All participants were presented the same 42 proposals in all 

treatment conditions, using a random order for each participant in order to rule out 

sequence effects. Following Klein and Garcia [7], participants in the BOL setting 

disposed over a total of eight lemons, representing ~20% of the total idea basket, which 

they were able to allocate to the ideas. In the up- and down-voting setting, participants 

could either up-vote or down-vote each idea once. This setting replicates that of 

platforms such as YouTube. Participants in the Likert scale setting were able to rate the 

ideas on 5-point Likert scales, ranging from 1 (very bad) to 5 (very good). Exceeding 

previous studies [7, 15, 20], participants in the Likert and up- and down-voting 

treatments were free to rate as many ideas as they liked, that is, there was neither a 

minimum nor maximum requirement. Participants were asked to complete a mandatory 

quiz before the actual rating task in order to ensure comprehension and hence validity. 

 

3.3 Measures 

After completing the rating process, participants were asked to conduct a brief 

survey. To ensure validity, previously validated scales were used and adapted to the 

context of this study. We assessed user attitudes towards the rating method, 

operationalized by the categories novelty and frustration [20, 52]. Information overload 

was adopted based on the items proposed by Schultz and Vandenbosch [8]. To assess 

user activity, we measured how many votes were casted in relation to the maximum 

number of votes in the respective treatment. This index ranges between 0 and 1. 

Table 1. Measurement items 

Construct Item Source 

Perceived Novelty Using the rating scale was a novel experience to me. [20] 

Frustration Using the rating scale was a frustrating experience to me. [20] 

Information Overload In using the rating scale, I was forced to concern myself my 

many idea proposals. 
[8] 

 In using the rating scale, I could not focus on the actual relevant 

idea proposals. 
 

 The rating scale overcharged me by too many idea proposals 

and too much information. 
 

4 Results 

In total, 141 participants completed the questionnaire, representing approximately 

50% of the total workforce at the institution. Altogether, 54 participants evaluated the 

ideas using BOL, 48 were in the Likert treatment, and 39 in the up- and down-voting 
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treatment. In compliance with German privacy regulation, participants were able 

provide personal information on a voluntary basis. Thus, only part of our sample 

reported age (61.5%) and/or gender (71.5%). The age of the (reporting) participants 

ranged from 18 to 37 years (mean 28.9). Moreover, 80% of our participants were male. 

These characteristics did not differ significantly among the three treatments. 

We first turn to the central target measures of this study, user activity and 

frustration. As illustrated in Figure 1, user activity was highest for the BOL method, 

and lowest for up-/down voting. A set of t-test confirms the significance of these 

differences (tBOL/Likert = 1.648, p=.103; tBOL/U&D = 4.347, p<.001; tLikert/U&D = 3.206, 

p<.001). As a first result, we thus note that the bag of lemons rating scheme facilitates 

higher levels of user activity than Likert scales or up- and down voting. 

Next, we consider how frustrating users perceived the different rating methods. 

Figure 1 shows that BOL provokes markedly higher levels of frustration than the other 

methods, whereas Likert and up-/down voting yield comparable levels. A set of t-test 

confirms this impression statistically (tBOL/Likert = 2.498, p=.014; tBOL/U&D = 2.783, 

p=.007; tLikert/U&D = .283, p=.778). As a second result, we note that the bag of lemons 

rating scheme facilitates higher levels of perceived frustration than Likert scales or up- 

and down voting. 

Besides these focal measures, we surveyed the participants in terms of how novel 

and how (informational) overloading they perceived the three rating methods. As can 

be seen in Figure 1, both for novelty and information overload, the bag of lemons 

method yields (marginally) significant higher levels than the other two (Novelty: 

tBOL/Likert = 11.033, p<.001; tBOL/U&D = 11.711, p<.001; tLikert/U&D = .983, p=.328; 

Overload: tBOL/Likert = 1.816, p=.072; tBOL/U&D = 2.555, p=.013; tLikert/U&D = 1.0613, 

p=.292). 

 

 
Figure 1. Overview of novelty, information overload, frustration, and activity scores (error bars 

indicate 95% confidence intervals) 

We now turn to a structural analysis of the effects of rating scale on user activity 

and frustration. As we have outlined in Section 2, we hypothesize perceived novelty 

and information overload as potential mediators, that is, carriers and hence 

psychological determinants of the rating scale effects on the target measures. For doing 

so, we slightly simplify the analysis, comparing the bag of lemons method against both 
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other methods simultaneously, that is, using only one binary dummy variable for “bag 

of lemons.” Our model, along with the results, is depicted in Figure 2. We use structural 

equation modelling based on partial least squares (SEM-PLS) to operationalize this 

analysis. Specifically, SmartPLS 3.0 [53] was used due to its flexibility in terms of 

sample size and its lack of assumptions regarding data and residuals distribution [54]. 

The sample size of this study (n = 141) exceeded the minimum required to validate a 

model in PLS, given the present structural model [55]. Confirming the results from 

above, this analysis shows that the bag of lemons significantly increases the perception 

both of (rating scale) novelty (b=.743, p<.001) as well as information overload (b=.212, 

p<.010). Information overload, in turn, significantly drives frustration (b=.262, 

p<.010), whereas the direct path from BOL to frustration is insignificant. Thus, 

information overload fully mediates the method’s direct impact on frustration (beyond 

its indirect effect via this path). 

In contrast, there does not occur any mediation on user activity, neither via 

perceived novelty, nor via information overload – both paths are insignificant. There 

exists, however, a positive and significant direct effect from BOL to user activity 

(b=.390, p<.001). 

 
Figure 2. Structural Research model, including standardized path coefficients and R squared 

values (*** p<.001; ** p<.01) 

Lastly, we considered the individual task completion times. Since this factor has an 

open-ended scale in one direction, Figure 3 depicts the main characteristics of the time 

distributions for the three treatment conditions in boxplot diagrams (indicating, median, 

as well as 25%- and 75%-quartiles). We find that the three conditions do not differ 

significantly in terms of completion time (tBOL/Likert = 1.564, p=.122; tBOL/U&D = 1.467, 

p<.147; tLikert/U&D = –.097, p=.923). 
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Figure 3. Boxplots of task completion times 

5 Discussion and Conclusion 

In this paper, we analyzed the effects of rating scales on users’ activity, perceived 

information overload, perceived novelty, and frustration. In a field experiment in an 

open innovation campaign for a mid-size German research center, we assessed how 

BOL, up- and down-voting, and Likert scales differed in terms of these measures when 

employees were asked to evaluate a corpus of ideas created by their peers. All 

employees of the research center were invited to rate 42 proposals, being exposed to 

one of the above mentioned rating scales (between subjects design). Analyzing the 

behavioral as well as the post-evaluation survey data, we demonstrate that BOL, while 

stimulating activity, is also perceived as more frustrating than other rating techniques. 

We trace this result to the mediating factor of perceived information overload. Although 

participants were exposed to the same amount of information, that is, the identical 

corpus of 42 ideas, the bag of lemons method yielded much higher overload 

perceptions. We suggest that this may be due to deliberative and “pending” nature of 

the bag of lemons approach. While using Likert scales or up/down voting techniques, 

each idea can be assessed at a time, allocating lemons to a set of many ideas can be 

challenging since the desire to allocate a lemon late in the process may require to 

reassess previously rated ideas, for instance, to decide where to withdraw lemons from. 

This need for continuous cross-links requires to keep more ideas in mental “working 

memory,” whereas they can be considered (and forgotten) sequentially when using the 

other techniques. 

Coming back to our first research question of how the “Bag of Lemons” rating method 

affect user activity and frustration in a collaborative evaluation task, we hence can 

summarize that BOL increases both user activity and frustration. With regard to the 

second research question, that is, the role of perceived novelty and information overload 

in mediating these effects, we see that information overload fully mediates the effect of 

the BOL method on frustration, while perceived novelty does not exhibit any mediating 

properties. Moreover, there do not occur any cross-mediating effects, that is, from 

novelty to frustration or from information overload to activity. 
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Considering that approximately 50 percent of the employees of the institution 

evaluated their peers’ proposals, this also hints at the high interest of employees in 

getting engaged in the process of participating in the decision-making processes at their 

workplace [28]. 

Theoretical and Practical Implications 

This study contributes to the literature by evaluating a novel, thus hardly researched 

method of idea evaluation (BOL) in comparison to more established methods (Likert 

scales, up-/down voting). We focus on the important indicators of user activity and 

frustration, which has not or only scarcely been assessed by extant literature in this 

context. By integrating these opposing factors within a joint research model, we 

enhance the understanding of collaborative evaluation processes in view of 

differentiated rating regimes [5, 25, 26]. Next, by relating these key indicators to 

mediating factors, we provide starting points for understanding how the different rating 

methods affect the users’ perceptions and behaviors. In particular, we identify 

perceived information overload as a potential mediating factor at play. Moreover, our 

study provides a show case of employee-driven innovation [27] and computer-

supported organizational participation [28]. We confirm findings of Riedl et al. [20], 

who suggested that people form attitudes towards rating scales. Our findings also lend 

support to Klein and Garcia [7], underpinning BOL’s novelty but, in contrast, do not 

confirm the method’s superiority in terms of task completion time. Yet, we extend the 

authors findings by shedding light on users’ perception of BOL’s restraining character. 

Participants in our study expressed higher levels of frustration when evaluating ideas 

using the BOL as compared to Likert and up- and down-voting. This suggests that 

people might refrain from engaging in a BOL evaluation task in the future. 

Accordingly, practitioners should be aware of the possibly detrimental effects of BOL 

when designing an open innovation platform. This effect, as it is mediated by perceived 

information overload, may substantially be driven by the relatively high number of idea. 

We suggest that idea evaluation tasks with fewer ideas (e.g., 6 to 12), may yield 

different results. 

Limitations and Future Research 

Our study needs to be considered against several limitations. First, we compared the 

different rating methods in terms of user activity, frustration, and time, however, could 

not consider the evaluations’ accuracy, that is, a match between the crowd’s assessment 

versus how good the ideas actually were. This limitation points at several paths for 

future research, very much in the sense of prior studies [7, 20]. Future work needs to 

take into account accuracy, for instance by comparing the collaborative results with an 

expert rater panel. 

Next, as we have shown in this study, BOL facilitates higher levels of (relative) user 

activity than other rating methods. Nonetheless, on average, Likert and up-/down votes 

yield a higher overall numbers of idea evaluations. Systematically varying the amounts 

of ideas and “lemons” to distribute could thus shed more light on the strengths and 

weaknesses of the BOL approach and its robustness against different set sizes. 

Due to strict German data protection legislation at the workplace, we were only able 

to capture some demographic characteristics of our participants. Thus, the data set is 
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somewhat incomplete and restricts us from fully taking into account potential age or 

gender effects. Based on the data we have, these characteristics did not differ between 

treatments, so that at least a treatment bias due to demographic factors could be ruled 

out. Another limitation relates to the fact that part of the correlation between the item-

based measures may be due to common method bias as most data was collected using 

standard questionnaire items. User activity represents an exception; correlations here 

will not exhibit common method bias.  

As this study finds rating scales to affect user frustration, we suggest that it is worth 

exploring the antecedents of scale-related techno-stress. The noteworthy differences for 

information overload between BOL and up- and down-voting already lend some 

support to this presumption. 

Furthermore, our study as well as previous ones [7, 10, 15, 20, 34] asked participants 

to rate ideas in the absence of any indication on whether and how other users already 

rated proposals. Future research could thus investigate the impact of information 

cascades, that is, users being able to see the evaluations of  other (earlier) users [56], 

which may significantly impact results [57]. Finally, future research should address 

how open innovation contests within companies shape employee commitment and 

overall productivity [28]. 
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