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Abstract. Optimizing the performance and availability of an IT service in the 

design stage are typically considered as independent tasks. However, since both 

aspects are related to one another, these activities could be combined by apply-

ing performability models, in which both the performance and the availability 

of a service can be more accurately predicted. In this paper, a design optimiza-

tion problem for IT services is defined and applied in two scenarios, one of 

which considers a mechanism in which redundant components can be used both 

for failover as well as handling overload situations. Results show that including 

such aspects affecting both availability and performance in prediction models 

can lead to more cost-effective service designs. Thus, performability prediction 

models are one opportunity to combine performance and availability manage-

ment for IT services. 

Keywords: IT Service Management, Availability Management, Capacity Man-

agement, Performability Modeling, Redundancy Allocation Problem  

1 Introduction 

IT service providers are faced with the challenge of designing high-quality and cost-

effective IT systems in order to stay competitive [1]. In particular, degraded quality of 

service may cause the violation of service level agreements, leading to penalty costs 

and loss of reputation for the service provider [2]. Two of the most crucial quality 

aspects of an IT service are performance and availability [3]. In order to ensure that a 

service achieves the desired quality level at a minimum of costs, capacity manage-

ment for performance as well as availability management have to be performed care-

fully [3]. 

However, managing the quality and costs of an IT service is difficult as these are 

complex systems with specific requirements, an architectural mix of diverse hardware 

and software components as well as skewed workload [1], [4]. In order to have accu-

rate estimates about service quality, an IT service is usually tested before its deploy-

ment [5], [6]. Nevertheless, there are decisions to be made in the service design stage 

and their correction in the deployment or operation stage may be very costly [7], [8]. 

This applies especially for architectural decisions which have the greatest impact on 

quality attributes [9]. 
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Therefore, performance and availability modeling techniques are effective in the 

service design stage, as they provide a first estimate about the service’s quality level 

[1], [5], [10]. On the basis of these models, different design alternatives can be com-

pared to minimize service costs [1], especially if alternatives are recommended auto-

matically [4]. For that purpose, optimization approaches can be applied. For instance, 

in [3] a heuristic for service-component allocations is presented to support capacity 

management. Other examples include optimizing the redundancy design for availabil-

ity management by defining redundancy allocation problems (RAP), e.g. in [11], [12]. 

Despite its advantages, a recent report of Gartner comes to the conclusion that most 

enterprises under-invest in performance modeling for capacity management [13]. One 

reason for that may be that most existing approaches for capacity management con-

sider performance in isolation, disregarding dependencies to other quality attributes 

such as reliability, availability, or scalability [14], which can be subsumed under the 

term dependability [15]. Thus, performance prediction models overestimate the ability 

of a service to satisfy its consumers [16]. On the other hand, applying pure dependa-

bility approaches will often lead to conservative quality estimates so that cost saving 

potentials are not addressed [16]. Hence, combined models for availability and per-

formance prediction could depict an opportunity to integrate capacity and availability 

management in order to achieve a cost-effective and high-quality service design. 

For approaches in which both performance and dependability aspects are consid-

ered, the term performability modeling can be used. While performability prediction 

models have been developed to analyze a single system, their possible impact on 

design optimization considering a large variety of systems has not been researched. 

Therefore, the question remains if an optimization approach on the basis of performa-

bility models would allow for higher cost-effectiveness of IT services than if isolated 

approaches are applied. In order to answer this question, an optimization problem is 

formulated in this paper for the capacity and redundancy design of an IT service. A 

simple Petri net performability model is used to estimate the quality and costs of a 

service design. In an illustrative example, it can be demonstrated that performability 

models provide the flexibility to include mechanisms affecting both performance and 

availability of a service such as an elastic standby redundancy derived from cloud 

computing concepts, which is not only used in failure but also in overload situations. 

This leads to a more effective peak-load handing [17] and, thus, to design suggestions 

with less costs while satisfying performance and availability service level objectives.  

2 Related Work 

In this section, relevant basics of capacity and availability management as well as 

performability modeling are introduced as the basis for the optimization problem.  

2.1 Capacity Management and Performance Models 

The capacity management process is an important part of the design stage in IT ser-

vice management frameworks such as the ITIL [18]. Its purpose is to ensure that an 
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IT service meets the current and future performance-related requirements in a cost-

effective manner [18]. Related terms are capacity planning and software performance 

engineering. The process of capacity management relies on performance models esti-

mating the relation between input (workload model, design alternatives) and output 

variables (e.g. response time, throughput, or utilization) [7]. Performance models can 

be classified into measurement- and model-based approaches [5].  

Measurement-based performance models require existing systems to be observed 

for at least some of the possible design alternatives [19]. The properties of non-

existing systems can be estimated by using machine learning methods such as support 

vector machines or random forests [20] (black-box approach). Nonetheless, these 

performance models often lack transferability to other problem classes [5]. In model-

based approaches, analytical performance models are used to describe the relationship 

between input and output variables (white-box approach). Examples are queuing 

networks [7], queuing Petri nets [4], (generalized) stochastic Petri nets [10], or sto-

chastic reward nets [16]. However, constructing these models requires insight into the 

performance characteristics of the used system components, which may not be acces-

sible especially for third-party software components [21]. Besides the pure measure-

ment- or model-based approaches, a grey-box approach can be applied, e.g. by using 

gained knowledge of existing components and design patterns [5] to combine low-

level measurements and high-level analytical models [8]. 

In order to evaluate performance models, the following techniques can be used: 

prototyping, testing, simulation, or analytical evaluation [5]. While prototyping and 

testing provide more accurate results, these approaches are also very costly and can 

only be applied in later lifecycle phases [6]. On the other hand, analytical and simula-

tion techniques can be applied in the design phase of the service lifecycle [5]. Analyt-

ical evaluation is faster, but some aspects of the system performance may not be con-

sidered (e.g. G/G/n queues). In this case, simulation approaches are more effective 

[4], [5], [7] which also allow for dynamic analysis of performance metrics [22]. 

After performance models can be constructed and evaluated, many possible design 

alternatives should be analyzed in order to find a suitable cost-performance tradeoff 

[1]. Since these alternatives should be compared quickly [7], an optimization ap-

proach can be applied. For instance, in [3] an optimization problem is defined to find 

the minimum number of computing nodes for a set of IT services, and a component-

allocation heuristic is developed to identify (sub)optimal solutions. 

2.2 Availability Management and the Redundancy Allocation Problem 

Similar to capacity management, availability management is an IT service design 

process aiming at meeting the agreed availability requirements at minimum costs 

[18]. A related term is software reliability engineering, which is, however, more fo-

cused on single software components than on complex systems of (third-party) com-

ponents [23]. As in capacity management, black- and white-box availability models 

can be constructed and evaluated by different methods. White-box approaches for 

availability modeling include combinatorial, state-space-based, or hierarchical tech-

niques [24]. 
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Basically, the availability of a system can be increased by applying fault removal, 

fault prediction, fault prevention, and fault tolerance approaches [15] while the latter 

two can be considered in the design phase [25]. However, preventing faults by in-

creasing component reliabilities is limited [26] and, thus, fault-tolerance has to be 

applied in order to achieve high-availability, e.g. by introducing redundancy mecha-

nisms [27]. Redundancy means to provide additional components with equal func-

tions to cover faults of the original components. Redundant components may be pur-

chased from another manufacturer or developed by different teams to decrease the 

probability of common-cause failures (heterogeneous redundancy). Additionally, 

active and passive (or standby) redundancy can be distinguished. 

A component in active redundancy is ready to instantly takeover for a defect com-

ponent. Passive components are in a lower state of readiness and need some time for 

takeover. Depending on the state and the time to activation, standby components can 

be classified into cold-, warm-, and hot-standby [28]. With increasing time to activa-

tion, usually failure rate and operational costs of a passive component are decreased 

[27]. In order to decide which components may require redundancy mechanisms and 

which type of redundancy has to be used, a redundancy allocation problem (RAP) can 

be defined. A RAP is a NP-hard optimization problem [29] and is often characterized 

by the following aspects: 

1. A system consists of 𝑛 required subsystems. 

2. In each subsystem, a number of components can be operated in redundancy. 

3. Components fail and recover according to random time distributions. 

4. For each subsystem, a number of components has to be identified so that availabil-

ity is maximized or costs are minimized subject to constraints. 

In recent years, RAP definitions with increasing complexity have been developed to 

include characteristics of IT systems. For instance, standby redundancy and its effects 

have been considered in [12], [28]. RAP are usually solved using (meta-)heuristics 

[30] such as genetic algorithms, e.g. in [11], [12], [28].  

2.3 Performability Modeling and Design Optimization 

While isolated performance and availability models are still subject of research, sev-

eral approaches try to combine both dependability and performance aspects as there 

are significant relations between those. One reason for this is that availability is not 

defined as the absence of failures, but as the probability of success [31]. Thus, una-

vailability is not only caused by failures but also by overload situation which lead to 

request rejections [19]. Furthermore, when response times increase, users will abort 

waiting for a reply and will consider the service as unavailable [7]. On the other hand, 

component faults may lead to degraded capacity of a service. 

In order to consider these aspects in a more accurate model of performance and 

availability, the concept of performability models can be applied [31]. Examples can 

be found in [5], [10], [16], [19]. However, there is a lack of design optimization ap-

proaches that are based on performability models although some RAP definitions are 

able to address performance aspects superficially since system capacity is formed by 
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the components operated in active redundancy. For instance, multiple component 

states have been introduced to model performance degradation of components. In 

order to compute the system performance from component states, the loss of load 

probability (LOLP) index is used as a measure for unavailability (e.g. in [32]) which 

has been originally defined for electrical power systems as the probability that de-

mand exceeds capacity. In an IT system, throughput is a related concept [33]. In a 

parallel subsystem of (active) redundant components, the throughput can be computed 

as the sum of the components’ throughputs. The throughput of a series system is de-

fined as the minimum of the subsystems’ throughputs. In order to estimate the availa-

bility of the system, the load of the system is set in relation to its throughput.  

The disadvantage of this approach is that performance is not considered in detail so 

that, for instance, response times cannot be analyzed. Furthermore, all subsystems 

have the same load at every time. In an IT service, however, a subsystem may be 

visited by a request more than once and the processing time in a subsystem can differ 

significantly [7]. In addition to that, the LOLP approach leads only to estimates about 

the mean utilization of components which makes it difficult to get accurate estimates 

for operational costs which may depend strongly on current utilization as e.g. the 

power consumption of a CPU. Thus, this approach is not suitable for an effective 

design optimization for a combined capacity and availability management. 

3  The Redundancy and Capacity Allocation Problem (RCAP) 

Our study of related work revealed that no suitable design optimization problem has 

been defined on the basis of performability models. In order to investigate the feasi-

bility of performability modeling for design optimization, a new optimization problem 

is presented in this section on the basis of the RAP. The objective of the optimization 

problem is to minimize the costs of an IT service while satisfying mean response time 

and availability constraints. Although the capacity of a service is determined by the 

components operated in active redundancy, the problem is named redundancy and 

capacity allocation problem (RCAP) to underline the differences to classical RAP 

approaches in which performance aspects are not sufficiently addressed. 

In order to demonstrate the opportunities of performability models, two different 

strategies for components in passive redundancy are considered: in the classical 

standby case, passive components are activated if and only if another component has 

failed. In the elastic standby scenario, these components are activated only in case of 

overloads, which may be caused by load peaks as well as component failures. 

3.1 Assumptions 

An IT service is consumed by customers that send independent, comparable requests. 

In order to respond to a request, a sequence of operations has to be performed. An 

operation is executed in a subsystem consisting of functional equivalent components. 

Each of these components can serve a number of operations concurrently and the 

processing time depends on the capacity of the component.  
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A component can have three states: active, standby (passive), and failed. Initially, a 

component is either active or standby. In active mode, a component fails and is recov-

ered again after random time intervals. A component does not provide capacity if it is 

failed and cannot fail if it is in standby mode. If a standby component has to be acti-

vated, a random time elapses before the component is set to active mode and may fail. 

In addition to component failures, the whole service can also be affected by a failure, 

which leads to the rejection of all requests currently processed (disaster case). All 

failure, recovery and activation times as well as inter-arrival and processing times can 

be described by parametric random distributions.  

If all servers are busy in a subsystem, operations to be processed are queued until a 

server becomes available (FIFO strategy). An admission control can be enabled to 

avoid unnecessary processing if a user will likely abort waiting for a reply by auto-

matically rejecting requests after a certain time in the system (timeout). 

The costs of the service are the sum of capital and operational costs. While the 

former is determined by the acquisition costs for components, the latter costs are 

compound of the costs arising for recovery activities and the components’ operational 

costs that depend linearly on their utilization levels. Another linear dependency is 

assumed between components and system operational costs, which is characterized by 

the power usage effectiveness (PUE) that ranges in practice from 1.2 to 3.0 [34]. 

3.2 Problem Definition 

A redundancy and capacity allocation problem (RCAP) is characterized by a timestep 

Δ𝑡, a factor 𝑃𝑈𝐸 as well as by random variables 𝑅, 𝑇𝑇𝐹 and 𝑇𝑇𝑅 describing inter-

arrival times, times to failure and times to recover for an IT service. Furthermore, a 

number of operations 𝑜 and subsystems 𝑛 have to be defined as well as a function 𝑜𝑝𝑠 

mapping operations to subsystems. Another function 𝑆 maps the operations to random 

variables describing the standard service time. In addition to that, a timeout 𝑡𝑜 can be 

defined for admission control. 

A set of components is associated with each subsystem. Each component 𝑖 is char-

acterized by its number of servers for concurrent operations 𝑠𝑖, a service time norm 

factor 𝑓𝑖, random distributions 𝑇𝑇𝐹𝑖 and 𝑇𝑇𝑅𝑖, a random distribution 𝑇𝑇𝐴𝑖 for its 

time to activation, its acquisition costs 𝑎𝑐𝑖, recovery costs 𝑟𝑒𝑐𝑖  as well as operational 

costs for Δ𝑡 in standby state 𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑖 , in idle mode 𝑖𝑑𝑙𝑒𝑖 and if fully utilized 𝑓𝑢𝑙𝑙𝑖. 

A solution candidate 𝑥 to the RCAP consists of 2𝑛 sets of component selections 

describing the components to be operated in active as well as passive redundancy for 

each subsystem. Thus, the optimization problem can be defined as follows: 

min
𝑥

𝐶(𝑥, 𝑡) s.t. 𝐴(𝑥) ≥ 𝐴0 ∧ 𝑅𝑇(𝑥) ≤ 𝑅𝑇0 (1) 

Since the costs of a service 𝐶 depends on the time interval to be considered, a parame-

ter 𝑡 has to be defined as well as the service level objectives for availability 𝐴0 and 

response time 𝑅𝑇0. 

An overview of all required parameters to define a RCAP are presented in Table 1. 
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Table 1. Parameter overview for the RCAP  

Problem Parameters Description 

Δ𝑡 ∈ ℝ Timestep for operational costs definition 

𝑃𝑈𝐸 ∈ ℝ Power usage effectiveness of the IT service 

𝑅: ℝ → ℝ Distribution of request inter-arrival times  

𝑇𝑇𝐹, 𝑇𝑇𝑅: ℝ → ℝ Distribution of time to failure/recovery for the service 

𝑜, 𝑛 ∈ ℕ Number of required operations and subsystems 

𝑜𝑝𝑠: ℕ → ℕ Function mapping operations to subsystems 

𝑆: ℕ → (ℝ →  ℝ) Function mapping operations to standard service time 

distributions 

𝑡𝑜 ∈ ℝ Timeout after which admission control is applied 

𝑠𝑖 ∈ ℕ Number of servers in a component i 

𝑓𝑖 ∈ ℝ Service time norm factor for a component i 

𝑇𝑇𝐹𝑖 , 𝑇𝑇𝑅𝑖 , 𝑇𝑇𝐴𝑖: ℝ → ℝ Distributions of time to failure, recovery, and activation 

for a component i 

𝑎𝑐𝑖 , 𝑟𝑒𝑐𝑖 ∈ ℝ Acquisition and recovery costs of a component i 

𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑖 , 𝑖𝑑𝑙𝑒𝑖 , 𝑓𝑢𝑙𝑙𝑖 ∈ ℝ Operational costs per timestep in standby and idle mode 

as well in full operation for a component i 

3.3 A Simple Performability Prediction Model 

On the basis of the RCAP definition, a simple performability prediction model is 

developed that can be used to estimate availability, mean response time, and costs of 

the solution candidates. Due to their modeling power, a solution candidate is modeled 

in a generalized stochastic Petri net (GSPN), cf. e.g. [35]. In order to consider arbi-

trary random variables, these models are evaluated by Monte Carlo simulation.  

Thus, a GSPN has to be automatically generated for each solution candidate. First, 

an arrival transition is defined that generates request tokens. To each subsystem, a 

queue place is assigned with infinite capacity for collecting incoming requests. An-

other place collects all rejected requests for the service. For a subsystem, a place and a 

corresponding processing transition are created for each server of the assigned com-

ponents and are connected to the queue of the subsystem performing the next opera-

tion. The subsystem queue is connected to the server places by immediate transitions 

which are only active if the component is working. In the case that the corresponding 

component fails, another immediate transition fires tokens to the rejection place in-

stead. To all transitions, random firing time distributions are assigned according to the 

component’s definition. 

In  

Figure 1, an example GSPN of a single subsystem of one active component with two 

servers is presented. Activation functions (dashed rectangles) are used to prevent 

requests to be rejected if the component is working or to be processed if it is failed. 

Request are created by the arrival transition and collected in the queue place. Depend-

ing on the component state (failed/working cycle below), requests are rejected or 

processed and assigned to the next operation queue. 
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RecoveryFailure
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Rejected

Arrival

If <<Working>>

If <<Failed>>

 
Figure 1. GSPN processing model example with an active component 

In order to implement the operation sequence as well as the admission control, tokens 

are distinguishable (colored Petri net) by their arrival time and the current operation. 

Based on this information, all tokens that have been longer in the system than the 

defined timeout are moved to the rejection place. Additionally, a subsystem model 

such as presented above can map more than one operation since firing times depend 

on the current operation of the token. After all operations are performed, the token is 

moved to a place in which completed requests are stored. 

While the state of an active component can be modeled by a simple failed/working 

cycle, for standby components, a standby place is introduced to indicate the current 

state of the passive component as displayed in Figure 2.  

RecoveryFailure

Failed

Working

TakeoverStandby

Standby 
Transition

 

Figure 2. GSPN state model example of a passive component 
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In standby mode, the state of the component is equivalent to a failure, but recovery is 

disabled. To the takeover and standby transitions, activation functions are assigned 

depending on the subsystem characteristics and the chosen standby strategy. In case 

of the classical standby, the takeover transition is activated if an active component 

fails. If the active components are recovered, the standby transition is activated and 

the passive component changes to standby mode. In elastic standby, takeover is acti-

vated if the subsystem queue is not empty and all working servers are busy (overload 

situation). The component is deactivated again if none of its servers are busy. 

For each completed request, the response time is the difference between its com-

pletion and its arrival time. The mean response time of a solution candidate is com-

puted from all request response times at the end of a simulation run. Availability is 

defined as the ratio of completed requests to arrived requests minus those in comple-

tion. The costs are the sum of acquisition, recovery, and operational costs. Impulse 

rewards for recovery costs are assigned to recovery transitions. The utilization of a 

component is computed after each timestep Δ𝑡 and is used to compute its current 

operational costs 𝑐𝑖 linearly based on values 𝑖𝑑𝑙𝑒 and 𝑓𝑢𝑙𝑙. This value is used in order 

to estimate the service operational costs 𝐶𝑜𝑝 up to a time t: 

𝑐𝑖(𝑡) = {
𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑖             

𝑖𝑑𝑙𝑒𝑖 + 𝑢𝑖(𝑡) ⋅ 𝑓𝑢𝑙𝑙𝑖

      , if ≪Failed≫
, otherwise

 

(2) 
𝐶𝑜𝑝(𝑥, 𝑡) =

𝑃𝑈𝐸

Δ𝑡
⋅ ∫ (∑ 𝑐𝑖(𝜏)

𝑖∈𝑥

) d𝜏
𝑡

0

 

By simulating the behavior of the solution candidate in several independent runs, 

mean values for response time, availability, and costs can be computed to characterize 

a solution candidate with statistical significance. 

3.4 A Genetic Algorithm to Solve the RCAP 

The RCAP defines an infinite search space that has to be efficiently explored for 

identifying (sub)optimal solutions. Therefore, a genetic algorithm is defined, which is 

characterized by problem-specific operations for evaluating a solution’s fitness, en-

coding a solution, initializing random solutions, altering (mutation) and recombining 

solutions as well as selection and termination criteria. 

The suitability of a solution to solve the defined RCAP is characterized by its fit-

ness to be maximized. According to [11], a penalty function is used to avoid infeasi-

ble solutions in the end. Since costs has to be minimized, the fitness is defined as the 

negative costs minus penalty: 

𝑓(𝑥) = −𝐶(𝑥) − 𝛿 (
max(0, 𝐴0 − 𝐴(𝑥))

𝑁𝐹𝑇𝐴

+
max(0, 𝑅𝑇(𝑥) − 𝑅𝑇0)

𝑁𝐹𝑇𝑅𝑇

) (3) 

In order to scale the penalty, pre-defined near-feasibility thresholds (NFT) are used as 

well as a factor 𝛿, which is the difference between the minimal cost of all solutions 

and the minimal cost of feasible solutions (cf. [36]). 
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For the encoding, a solution candidate is represented by two vectors for the active 

and the passive configuration. Each vector consists of 𝑛 integer vectors corresponding 

to the indices of the defined components for a subsystem. An example encoding for 

three subsystems may look as follows: 

(((2,1), (1), (2,2)), ((. ), (1), (. ))) 

In this solution candidate, two different components are operated in active redundan-

cy in the first subsystem (of the second and the first type in this subsystem), but no 

component is operated in passive redundancy (empty bracket in the second vector). In 

the second subsystem, however, two components of the first type in this subsystem 

are used whereas one is in active and the other in passive redundancy.  

Solution candidates are generated by choosing random components for the subsys-

tems. The number of components in a subsystem is randomly chosen according to a 

pre-defined distribution. If a solution is to be mutated, a subsystem is randomly cho-

sen and a random operation is applied to active or passive sets: with 20% probability, 

a component choice is exchanged. A component is either added or removed with 40% 

probability. The remove operation is disabled if a subsystem consists only of one 

active or zero passive components. For the recombination of two solutions, separate 

uniform crossovers are applied for the active as well as the passive configuration. 

Thus, subsystem configurations are exchanged between both solution candidates. 

In the genetic algorithm, first a number 𝜇 solutions are generated and their fitness 

is evaluated. In the main loop, 𝜆 solutions (𝜆 > 𝜇) are created by recombination 

(whereas fitter solutions are more frequently recombined) and mutation is applied 

with a certain probability 𝑝𝑚𝑢𝑡 . After the fitness of the new solution candidates is 

evaluated, 𝜇 solutions are selected from those by performing tournament selection for 

the next loop (generation). In tournament selection, 𝜇 tournaments of 𝑡 solutions are 

performed in which the 𝑘th fittest solution is selected with probability 𝑝𝑡(1 − 𝑝𝑡)𝑘−1. 

The algorithm results in the fittest solution after 𝑚𝑎𝑥𝐺𝑒𝑛 generations. 

4 An Illustrative Example: Sales and Distribution 

The advantages of the performability optimization approach are demonstrated in a 

small and illustrative example describing an IT service with eight operations. For that 

purpose, the GA, model generation and simulation have been implemented in the 

java-based simulation framework AnyLogic 6.8.2. The simulation results have been 

verified by comparing test instances with results from Markov-based queuing and 

availability models. 

The operations to be performed describe a standard business process for a delivery 

from stock scenario with prior lead generation and subsequent material requirements 

check. Therefore, five different subsystems are involved in this process (cf. Table 2). 

In order to define service times, data from a standard benchmark for the sales and 

distribution modules of SAP ERP business applications has been used. In this context, 

the capacity of components can be measured in the normalized metric SAPS (SAP 

Application Performance Standard), where 100 SAPS equal 2,000 fully processed 

order line items per hour. Standard service times have been computed from mean 
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response times of various benchmark results that had been performed over the last ten 

years and are presented in Table 2. Using the reciprocal of these values as a rate, 

exponential random variables have been defined for the standard service time of each 

operation. These times are valid for the mean processing power of all analyzed com-

ponents which is 5332.62 SAPS. 

Table 2. Operations, subsystems, and standard service times of the illustrative example  

Operation Subsystem Mean standard  

service time in ms 

Maintain Leads Customer Relationship  

Management (CRM) 

2,451.65 

Create Sales Order Sales and Distribution (SD) 1,415.69 

Create Outbound Delivery Logistics Execution (LE) 1,309.62 

Display Sales Order Sales and Distribution (SD) 883.65 

Change Outbound Delivery Logistics Execution (LE) 1,101.17 

Create List of Sales Orders Sales and Distribution (SD) 1,923.90 

Create Billing Document Billing (B) 2,121.83 

Display Stock/Requirements 

Situation 

Production Planning and Control 

(PP) 

557.71 

In each subsystem, three possible components can be chosen that are presented in 

Table 3. The norm factor for the service times is computed by relating the SAPS per 

server to the mean value of the standard service times. For the computation of opera-

tional costs, an energy price of 0.2814 €/kWh is assumed.  

Table 3. Available components for the subsystems 

Label ac in 

€ 

Capacity 

in SAPS 

s f standby 

in ct/h 

idle in 

ct/h 

full in 

ct/h 

A 2,494 11,500 8 3.70 0.02 3.83 6.22 

B 21,580 150,000 72 2.57 0.28 2.43 15.67 

C 4,669 43,000 16 1.99 0.14 1.58 5.52 

All components share the same transition times: time to failure is exponentially dis-

tributed with a mean value of 8,760h, time to recover normally distributed with mean 

1.73h and a variance of 0.5h and time to activation normally distributed with mean 

30s and variance 5s (cold standby). The simulation is run for three years to map de-

preciation of acquisition costs (26,280h). A PUE of 2.0 is assumed, meaning that for 

every unit of energy consumed by the components a unit of energy is consumed for 

supporting systems. For an arrival rate of 18,000 requests per hour (exponential dis-

tribution of inter-arrival times), the mean response time should be lower than 30s and 

the availability should be at least 99.95%. The timeout for requests is 100s. 

For both the classical and the elastic standby scenario, ten iterations of the genetic 

algorithm are performed. In each of these iterations, ten generations are conducted 
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with 𝜇 = 30, 𝜆 = 60, 𝑝𝑚𝑢𝑡 = 0.2, 𝑡 = 4, 𝑝𝑡 = 0.9, 𝑁𝐹𝑇𝐴 = 0.0001 and 𝑁𝐹𝑇𝑅𝑇 = 5𝑠. 

Solution candidates are initialized by choosing a normally distributed number of 

components in each subsystem (mean 3, variance 2 for active and mean 1, variance 

0.5 for passive components). In order to evaluate a solution, 25 simulation replica-

tions are performed. In Table 4, the mean and standard deviation of the fitness values 

in the ten iterations are presented. It can be stated that in the elastic standby case solu-

tions with less cost are identified on average. 

Table 4. Fitness statistics for ten iterations in both scenarios 

 Classical Elastic 

Mean fitness -215,180.52 -128,415.66 

Standard deviation of fitness 54,668.21 49,718.86 

A comparison of the fittest solutions of both scenarios over all ten iterations is given 

in Table 5, using the labels of Table 3 to indicate recommended components for the 

subsystems presented in Table 2. For each subsystem, the recommended components 

in active (a) and passive (p) mode are displayed. While availability and response time 

are comparable in the elastic case, the costs of the service are significantly reduced in 

comparison to the classical standby scenario. The main reason for this is that fewer 

components are used in active mode. 

Table 5. Fittest individuals in the classical (above) and the elastic standby scenario (below) 

CRM SD LE B PP A RT C -f(x) 

a p a p a p a p a p 0.9… in s in €  

CCAA A CCCC  ACC  CC C AAAC  99407 25.18 119,041 131,370 

AC C CC C CC  C C C C 99490 24.60 84,231 84,233 

These results demonstrate that a classical optimization approach will result in higher 

costs since capacity for overload situations has to be provided by the active compo-

nents and standby components are only used in failure cases. In the elastic scenario, 

however, some of the needed capacity for overload situations can be provided by the 

standby components while failover is still applicable. Thus, considering a mechanism 

affecting both availability and performance in an integrated model leads to a more 

cost-effective service design. 

5 Conclusion 

In design optimization for IT services, most approaches rely on isolated models for 

performance or availability estimation. However, defining optimization problems on 

the basis of performability models considers design mechanics affecting both capacity 

and availability of an IT service. In this paper, it could be demonstrated that address-

ing these aspects in an integrated prediction model can lead to more cost-effective 

design suggestions than if performance and availability optimization are considered 
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separately. Hence, this paper reveals some of the potential of integrated availability 

and capacity management for IT service management. 

Although the developed simulation approach provides accurate results, the runtime 

of the optimization iterations may exceed several hours due to model stiffness, i.e. the 

great difference between transition rates of performance and availability state changes 

in a monolithic model [16]. This clearly affects the scalability of the approach to solve 

larger problem instances. One solution to this problem without affecting accuracy 

could be the massive parallelization of the independent simulation replications as well 

as of fitness evaluations. In this context, the scalability of the approach should be 

tested in large-scale problem instances in which service and transition times are not 

exponentially distributed to demonstrate the suitability of the simulation approach.  

On the other hand, some assumptions made to demonstrate the feasibility of the 

applied approach have to be overcome in future work to increase applicability. This 

includes the assumption of the linear dependency between utilization and operational 

costs [37] as well as the use of mean response time as an objective while service level 

agreements normally include percentile guarantees. However, the developed approach 

can easily be adapted to result in arbitrary percentiles for response time. Furthermore, 

mean values of replications are used for fitness evaluation of solution candidates. 

Instead, confidence interval boundaries can be reported which would introduce uncer-

tainty in the optimization. Another limitation is the fixed capacity of the defined com-

ponents which may not reflect elastic and pay-per-use cloud computing services. This 

fact may be addressed by defining component capacity as a dynamic range with ac-

cording costs. Additionally, the defined prediction model is not covering all aspects 

influencing response time and availability, for instance, operator errors which are 

reported to be one of the major causes for unavailability of IT systems [38]. Consider-

ing these limitations in future work as well as introducing additional quality aspects 

such as security could lead to even more realistic quality and cost estimates and, thus, 

to better service designs. 

References 

1. Almeida, V.A., Menascé, D.A.: Capacity planning an essential tool for 

managing Web services. IT professional. 4, 33–38 (2002). 

2. Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N., Brandic, I., Buyya, R., De 

Rose, C.A.F.: Towards autonomic detection of SLA violations in Cloud 

infrastructures. Future Generation Computer Systems. 28, 1017–1029 (2012). 

3. Roy, N., Dubey, A., Gokhale, A., Dowdy, L.: A capacity planning process for 

performance assurance of component-based distributed systems. In: ACM 

SIGSOFT Software Engineering Notes. pp. 259–270. ACM (2011). 

4. Kounev, S.: Performance modeling and evaluation of distributed component-

based systems using queueing petri nets. IEEE Transactions on Software 

Engineering. 32, 486–502 (2006). 

5. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for 

model-driven performance prediction. Journal of Systems and Software. 82, 3–

22 (2009). 

88



6. Nambiar, M., Kattepur, A., Bhaskaran, G., Singhal, R., Duttagupta, S.: Model 

Driven Software Performance Engineering: Current Challenges and Way Ahead. 

ACM SIGMETRICS Performance Evaluation Review. 43, 53–62 (2016). 

7. Menasce, D.A., Almeida, V.A., Dowdy, L.W., Dowdy, L.: Performance by 

design: computer capacity planning by example. Prentice Hall Professional 

(2004). 

8. Terlit, D., Krcmar, H.: Generic Performance Prediction for ERP and SOA 

Applications. In: Proceedings of the 18th European Conference on Information 

Systems (ECIS) (2011). 

9. Williams, L.G., Smith, C.U.: Performance evaluation of software architectures. 

In: Proceedings of the 1st international workshop on Software and performance. 

pp. 164–177. ACM (1998). 

10. Bosse, S., Schulz, C., Turowski, K.: Predicting Availability and Response Times 

of IT Services. In: Proceedings of the 22nd European Conference on 

Information Systems (ECIS). , Tel Aviv, Israel (2014). 

11. Coit, D.W., Smith, A.E.: Reliability Optimization of Series-Parallel Systems 

Using a Genetic Algorithm. IEEE Transactions on Reliability. 45, 254–266 

(1996). 

12. Tokuno, K., Yamada, S.: Markovian availability modeling for software-

intensive systems. International Journal of Quality & Reliability Management. 

17, 200–212 (2000). 

13. Head, I., Govekar, M.: Market Guide for Capacity Management Tools. Gartner 

(2015). 

14. Williams, L.G., Smith, C.U.: PASA SM: a method for the performance 

assessment of software architectures. In: Proceedings of the 3rd international 

workshop on Software and performance. pp. 179–189. ACM (2002). 

15. Laprie, J.-C.: Dependable Computing: Concepts, Limits, Challenges. In: 25th 

IEEE International Symposium on Fault-Tolerant Computing. pp. 42–54. , 

Pasadena, CA, USA (1995). 

16. Ma, Y., Han, J.J., Trivedi, K.S.: Composite performance and availability 

analysis of wireless communication networks. IEEE Transactions on Vehicular 

Technology. 50, 1216–1223 (2001). 

17. Ranjan, R., Zhao, L., Wu, X., Liu, A., Quiroz, A., Parashar, M.: Peer-to-peer 

cloud provisioning: Service discovery and load-balancing. In: Cloud Computing. 

pp. 195–217. Springer (2010). 

18. Hunnebeck, L.: ITIL Service Design 2011 Edition. The Stationery Office, 

Norwich, UK (2011). 

19. Woodside, M., Franks, G., Petriu, D.C.: The future of software performance 

engineering. In: Future of Software Engineering, 2007. FOSE’07. pp. 171–187. 

IEEE (2007). 

20. Venkataraman, S., Yang, Z., Franklin, M., Recht, B., Stoica, I.: Ernest: efficient 

performance prediction for large-scale advanced analytics. In: 13th USENIX 

Symposium on Networked Systems Design and Implementation (NSDI 16). pp. 

363–378 (2016). 

21. Brebner, P.C.: Performance modeling for service oriented architectures. In: 

Companion of the 30th international conference on Software engineering. pp. 

953–954. Springer (2008). 

89



22. Jewell, D.: Performance Modeling and Engineering. Presented at the (2008). 

23. Vouk, M.A.: Software reliability engineering. In: Annual Reliability and 

Maintainability Symposium (2000). 

24. Trivedi, K., Ciardo, G., Dasarathy, B., Grottke, M., Matias, R., Rindos, A., 

Vashaw, B.: Achieving and Assuring High Availability. In: Nanya, T., 

Maruyama, F., Pataricza, A., and Malek, M. (eds.) 5th International Service 

Availability Symposium (ISAS). pp. 20–25. Springer Verlag Berlin Heidelberg, 

Tokyo, Japan (2008). 

25. Garg, H., Rani, M., Sharma, S.P., Vishwakarma, Y.: Bi-objective optimization 

of the reliability-redundancy allocation problem for series-parallel system. 

Journal of Manufacturing Systems. 33, 335–347 (2014). 

26. Chi, D.-H., Kuo, W.: Optimal Design for Software Reliability and Development 

Cost. IEEE Journal on Selected Areas in Communications. 8, 276–282 (1990). 

27. Shooman, M.L.: Reliability of Computer Systems and Networks – Fault 

Tolerance, Analysis, and Design. John Wiley & Sons New York, New York, 

NY, USA (2002). 

28. Ardakan, M.A., Hamadani, A.Z.: Reliability–redundancy allocation problem 

with cold-standby redundancy strategy. Simulation Modelling Practice and 

Theory. 42, 107–118 (2014). 

29. Chern, M.-S.: On the computational complexity of reliability redundancy 

allocation in a series system. Operations Research Letters. 11, 309–315 (1992). 

30. Soltani, R.: Reliability optimization of binary state non-repairable systems: A 

state of the art survey. International Journal of Industrial Engineering 

Computations. 5, 339–364 (2014). 

31. Meyer, J.F.: On evaluating the performability of degradable computing systems. 

IEEE Transactions on computers. 100, 720–731 (1980). 

32. Ouzineb, M., Nourelfath, M., Gendreau, M.: Tabu search for the redundancy 

allocation problem of homogenous series–parallel multi-state systems. 

Reliability Engineering & System Safety. 93, 1257–1272 (2008). 

33. Bosse, S., Splieth, M., Turowski, K.: Multi-Objective Optimization of IT 

Service Availability and Costs. Reliability Engineering & System Safety. 147, 

142–155 (2016). 

34. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The Cost of a Cloud: 

Research Problems in Data Center Networks. SIGCOMM Comput. Commun. 

Rev. 39, 68–73 (2008). 

35. Ciardo, G., Muppala, J.K., Trivedi, K.S.: SPNP: Stochastic Petri Net Package. 

In: Proceedings of the 3rd International Workshop PNPM. pp. 142–151. IEEE 

Computer Society (1989). 

36. Kulturel-Konak, S., Smith, A.E., Coit, D.W.: Efficiently Solving the 

Redundancy Allocation Problem Using Tabu Search. IIE Transactions. 35, 515–

526 (2003). 

37. Walker, E.: The Real Cost of a CPU Hour. Computer. 42, 35–41 (2009). 

38. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do Internet services fail, 

and what can be done about it? In: 4th Usenix Symposium on Internet 

Technologies and Systems (USITS) (2003). 

 

90




