
13th International Conference on Wirtschaftsinformatik,

February 12-15, 2017, St. Gallen, Switzerland

Enterprise Modeling Support for SOA Migration

Sybren de Kinderen and Monika Kaczmarek-Heß

Information Systems and Enterprise Modelling, University of Duisburg-Essen, Essen, Germany
{sybren.dekinderen,monika.kaczmarek}@uni-due.de

Abstract. The migration to a Service Oriented Architecture (SOA) is a complex

undertaking in terms of aligning business and IT concerns as well as analysis of

technical aspects. Conceptual modeling can be helpful for supporting SOA

migration by (1) bridging the gap between business and IT concerns, and (2)

analyzing the as-is and to-be IT infrastructures. We contribute language

requirements derived from SOA migration literature, and extend an IT

infrastructure Modeling Language, ITML, to support SOA migration. We

illustrate the extended ITML with a documented SOA migration case.

Keywords: enterprise modeling, service-orientation, SOA migration

1 Introduction

Since its emergence and subsequent mainstream acceptance during the early 2000s

[1, p. 75], adopting a Service Oriented Architecture (SOA) remains an important

concern for many organizations [2, 3]. Service orientation (ideally) fosters

organizational flexibility and agility by promoting (1) re-use of the functionality

offered by services [5], (2) modifiability of (IT) functionality, which is realized by

loose coupling [6, p. 64].

Successfully migrating an organization towards service orientation has however

proven challenging [7, 8]. Conceptual modeling has the potential to play an important

role in supporting SOA migration, in particular to foster (1) communication between

business experts and IT experts [10], so as to ensure that IT functionality is driven by

business concerns and vice versa; (2) to perform an in-depth analysis of the as-is and

to-be IT elements [9, 11] so as to, e.g., identify functionality of legacy systems in

need of wrapping [11]. Although various modeling languages exist that allow for

expressing service orientation from various angles (cf. [12–14]), these languages

often on purpose forgo the level of detail that is required in analysis of an IT

infrastructure for the needs of SOA.

In order to address this gap, we focus on the following question: What should be

the scope and characteristics of a modeling language able to support SOA migration

projects? To address it, we first identify a set of requirements based on the analysis of

SOA migration literature and of characteristics of SOA migration projects and then,

extend an already existing modeling language, namely ITML [4], to account for

missing aspects. The proposed extensions have been evaluated against the

requirements and with an extensively documented SOA example.

346

de Kinderen, S.; Kaczmarek-Heß, M. (2017): Enterprise Modeling Support for SOA Migration,
in Leimeister, J.M.; Brenner, W. (Hrsg.): Proceedings der 13. Internationalen Tagung
Wirtschaftsinformatik (WI 2017), St. Gallen, S. 346-349

2 Modeling Support for SOA Migration: Requirements

‘Migration’ is usually understood as moving an existing operational system to a new

technological or computing platform, while retaining the data and functionalities of

the moved system (cf. [15]). SOA migration projects requires knowing at least the as-

is and to-be states of the IT infrastructure and how these support business concerns

(cf. [9, 11]).

Table 1. Requirements on a conceptual modeling language supporting SOA migration

RQ Requirement and Candidate Concepts

I Requirements For As-Is Models

1 The modeling language should allow for expressing IT landscape elements.
Candidate concepts: Database, Database management system, Middleware, Server

2 The modeling language should allow for expressing the dependencies between IT landscape

elements. Candidate concepts: uses, provides, runs on

3 The modeling language should account for non-functional properties of legacy systems.

Candidate concepts: mission criticality, source code availability, impl. lang., code complexity

II Requirements For To-Be Models

4 A modeling language should provide dedicated concepts that allow to model a service and its

relevant types. Candidate concepts: Service, WebService, Interface

5 The modeling language should allow for relating a service to its underlying implementation, in
accordance with the migration strategy. Candidate concepts: Wrapper, provides, runs on, uses

6 The modeling language should account for quality attributes of service oriented concepts.

Candidate concepts: various QoS characteristics

Overall Requirements

7 The modeling language should allow for expressing dependencies between the IT landscape and

the organization action system. Candidate concepts: supports, context of use

The as-is state usually encompasses information about legacy systems. Legacy

systems are systems that are usually hard to modify and expensive to maintain.

However, at the same time these systems are often mission-critical and thus, must be

operational at all times [9]. The to-be state reflects the service oriented design of the

architecture. As understanding the as-is and to-be states is important for carrying out

the migration, the aim of the modeling language should be to: (1) provide knowledge

on the current state of the IT infrastructure with the focus on legacy systems (cf. RQ1

& RQ3) and (2) express the to-be state of the service orientation and reflect the

changes that should be performed following the selected migration strategy (cf. RQ4).

For the as-is and to-be state IT infrastructure, we are interested in expressing the

observable functionality of IT infrastructure elements, which translates into the

requirements: IT infrastructure elements (RQ1) and their interdependencies (RQ2).

Furthermore, for any meaningful analysis of the possible behavior of IT

infrastructure elements we need to analyze non-functional attributes [11] (RQ3).

Concerning the to-be IT landscape, the language should provide (rudimentary)

expressiveness for service orientation. This entails to (1) express services and related

subtypes, in addition to their quality attributes, through the language (RQ4), as well as

to (2) relate these services to elements of the IT infrastructure (RQ5). The latter

347

relation is important for the aim of the language: to analyze how an IT infrastructure

should be changed to realize the functionality offered by a service.

In addition, SOA migration should be considered from both an IT infrastructure

and a business perspective (cf. RQ7). Business processes largely drive what is

implemented in terms of IT support [8, 16], and vice versa.

3 Extended ITML

We now briefly illustrate SOA extensions of our language, called the extended IT

Modeling Language (ITML), which is based on [4]. For illustration purposes, in

Fig. 1 we modeled a to-be SOA of the ACME insurance company [6, pp. 541–578].

We focus on three features of extended ITML, illustrated by the labels 1-3 (cf. Fig. 1).

Figure 1 ACME insurance’s desired service orientation, modeled in ITML

348

Extended ITML allows for (1) expressing, when used in tandem with the other

MEMO languages [17], how IT functionality supports business processes (cf. RQ7).

E.g., the web services “policy management service” and “driver management service”

both support – Label 1 – the business process “underwrite the quote” (with

relevance:high), (2) expressing non-functional attributes (RQ3&RQ6), such as –

Label 2 – the necessity of a web service to support asynchronous communication, as

well as a wrapper supporting bi-directional communication, and (3) inventorying

relevant IT infrastructure assets and their relations (cf. RQ1&RQ2&RQ5), such as –

Label 3 - the desire to keep using legacy bulk transaction processing functionality via

a wrapper.

References

1. Erl, T.: Service-oriented architecture: concepts, technology, and design. Pears. Edu. (2005)

2. MacLennan, E., Van Belle, J.P.: Factors affecting the organizational adoption of service-

oriented architecture (SOA). ISeB 12(1) 71–100 (2014)

3. Alwadain, A., Fielt, E., Korthaus, A., Rosemann, M.: Empirical insights into the

development of a service-oriented enterprise architecture. DKE 105 39-52 (2016)

4. Heise, D.: Unternehmensmodell-basiertes IT-Kostenmanagement als Bestandteil eines

integrativen IT-Controllings. Logos, Berlin (2013)

5. Razavian, M., Lago, P.: Towards a conceptual framework for legacy to SOA migration. In:

ICSOC/ServiceWave Workshops, pp. 445–455. Springer (2010)

6. Rosen, M., Lublinsky, B., Smith, K.T., Balcer, M.J.: Applied SOA: Service- Oriented

Architecture and Design Strategies. Wiley Publishing (2008)

7. Hirschheim, R., Welke, R.J., Schwarz, A.: Service-oriented architecture: Myths, realities,

and a maturity model. MIS Quarterly Executive 9(1) (2010)

8. Rabelo, R.J., Noran, O., Bernus, P.: Towards the next generation service oriented

enterprise architecture. In: IEEE 19th Int’l EDOC Workshop, pp. 91–100. IEEE (2015)

9. Khadka, R., Saeidi, A., Jansen, S., Hage, J..: Migrating a large scale legacy application to

SOA: Challenges and lessons learned. In: WCRE 2013. pp. 425–432. IEEE (2013)

10. Razavian, M., Gordijn, J.: Consonance between economic and it services: finding the

balance between conflicting requirements. In: REFSQ, pp. 148–163. Springer (2015)

11. Razavian, M., Lago, P.: A systematic literature review on SOA migration. Journal of

Software: Evolution and Process 27(5) 337–372 (2015)

12. The Object Management Group: Service oriented architecture Modeling Language

(SoaML), version 1.0.1 (2012)

13. Terlouw, L.I., Albani, A.: An enterprise ontology-based approach to service specification.

IEEE Transactions on Services Computing 6(1) 89–101 (2013)

14. The Open Group: ArchiMate 2.1 Specification: Open Group Standard. The Open Group

Series. Van Haren, Zaltbommel (2013)

15. Bisbal, J., Lawless, D., Wu, B., Grimson, J.: Legacy information systems: Issues and

directions. IEEE Softw. 16(5) 103–111 (1999)

16. Papazoglou, M.P., Van Den Heuvel, W.J.: Service-oriented design and development

methodology. Int J Web Eng Tech 2(4) 412–442 (2006)

17. Frank, U.: The MEMO Meta modeling Language (MML) and Language Architecture. 2nd

Edition. ICB-Research Report 43, University of Duisburg-Essen (2011)

349

