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Abstract. Organizations nowadays possess huge repositories of process 

models. Inductive reference modelling can save costs and time by reusing 

process parts of process models belonging to a common domain. The inductive 

development of a reference model for a large corpus of process models is a 

difficult problem. Quite a few, primarily heuristic approaches have been 

proposed to the research community that require an approximate matching 

between the single processes. With our approach, we introduce a new concept 

that brings in for the first time an abstract efficiency simulation of the social 

collaboration around knowledge-based process models. A reference model is 

assembled featuring at least the topological minimum requirements to be 

significantly more efficient than the input process models. Our evaluation 

indicates that the approach is able to generate reference process models that are 

more efficient than the input process models and at least as a reference model 

designed by an expert. 

Keywords: Social Collaboration, Knowledge Work, Social Network Analysis, 

Reference model mining 

1 Introduction 

1.1 Research Motivation 

Business process models, as event-driven process chains (PMs), are representatives of 

processes in an enterprise or in an organization. Current processes may be analysed in 

order to be improved. Organizations maintain huge repositories of these PMs. 

Therefore, the PMs have to be analysed as it is necessary for optimizing and 

managing the repositories. Typically, business analysts have specialized knowledge of 

the processes and provide expertise in modelling reference process models (RMs). 

These RMs enable reusability, modularity and avoiding redundancy by the design of 

new models which saves costs and time. They represent a best practice in a domain 

and can be extended for individual requirements [1]. The inductive development of 

universally applicable and reusable RMs (reference modelling in the following) is of 

great importance in the field of business process management as it seeks to infer 

generic models or patterns of a domain [2]. A strategy of reference modelling is to 
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identify similarities between individual PMs and to derive an abstracted PM [3]. In 

contrast to deductive approaches, general theories and concepts are not applied for the 

development of RMs [4]. The utilization of RMs can save time and costs towards 

single PM variants [17] which makes their execution efficient. The efficiency of a 

RM hence should be considered when aiming at developing RMs.  

1.2 Related Work 

Prior respecters of reference modelling are: [25] mine RMs by analyzing desired 

behavior from event log data. [27] and [26] develop a RM that has a minimal graph-

edit distance respectively a minimal cost of change to given process variants. [7] and 

[30] apply genetic algorithms. [32] apply factor analysis to find statistical 

commonalities in the process structures. [33] assemble a RM from hierarchical 

clustered process fragment. [28] seek to identify similar frequent substructures among 

PMs. [29] derive a RM by gathering similarities of given PMs not only by their 

structure but by their behavior profile. [31] iteratively create a RM based on the 

proximity of node pairs.  

The named previous automatic reference modelling approaches develop a RM 

“bottom-up” by comparing the node labels or PM topology. This comparison requires 

critical assumptions such as a certain model design quality, consistent syntax and 

language. The understanding of the semantics or similarity of process elements is 

subject to the process matching problem whose underlying graph matching problem is 

principally NP-complete [16]. There are heuristic approaches for the problem that 

achieve an approximate solution which is not generally unique and is afflicted with a 

loss of information [5]. 

1.3 Research Problem and Approach 

Social collaboration in organizations is a competitive advantage as it is a driver for 

efficiency, time and money saving potential, product quality and knowledge diffusion 

[15]. Reference modelling has to be seen under several facets simultaneously in 

regard to quality and usability [18]. We belief that social collaboration around PMs is 

an important facet for reference modelling, especially in the context of knowledge-

based processes. In the field of inductive reference process model mining, a social 

perspective for matching the process flow is missing. Prior approaches are primarily 

based on label matchings and similar graph structure detection in the process models. 

The influence of the topology of social collaboration between the humans that work 

around the process (performers) is neglected. Our research question thus is, what is an 

efficient collaboration topology between performers for a corpus of process models.  

Therefore, we want to conceptualize and implement in this work an approach for 

the inductive development of a RM from a corpus of knowledge-based business 

process models applying a social perspective for matching the process flow. The 

resulting RM shall consist of an efficient collaboration topology for the performers 

working at their associated process functions. Following the concept of [9], the RM is 

a PM derived from a performer network (PN) that represents at least the minimum 
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requirements of the PM to be efficiently executed. The PN for the RM development is 

optimized to fit best to the efficiency of the input PMs. The definition of efficiency 

can be found in section 2.2. The RM development and interpretation does not need a 

label matching. The resulting RM consists the minimum process elements for being as 

efficient as the PMs from it was derived. It can be tailored to concrete organizations 

and processes. Thereby, risks for the execution potential of a PM can be identified 

and reduced; needed key performers and their influence can be tracked; the structure 

of successful co-workership and knowledge/information transfer can be disclosed. 

The organization becomes more transparent and costs as well as managing effort are 

reducible.  

Our approach relies on social network analysis and evolution strategy [10]. Its 

empirical evaluation follows [8] and the prototypical implementation is based on 

design research [14]. The validation of our concept faces three scenarios in which our 

prototypical implementation develops RMs from three PM corpora of different 

domains and two languages. The developed RMs are compared to the given 

respective gold RMs of each scenario. Gold RMs are designed by domain experts. 

The paper is structured as follows: After fundamental concepts and terms are 

introduced, our approach is described followed by the validation of our concept with 

the experimental design, the evaluation and the discussion of our results. Afterwards, 

a conclusion brings this work to a close.  

2 Fundamentals 

2.1 Social Network Analysis 

A social network represents the relation between agents. Agents are constituted as 

nodes and the links between them as edges. The agents are atomic units and they can 

only communicate and collaborate with agents that are directly connected to them. 

Social network analysis (SNA) seeks to disclose social interactions, political power 

and co-workership by abstracting from social relationships [6]. A social network has n 

agents/nodes and m edges. People tend to form clusters which are groups of directly 

connected individuals [20]. Those edges are called local edges. Edges between 

clusters are called global. The extend of this tendency can be measured by the average 

clustering coefficient of a network, CC. CC is the number of the actual- in relation to 

the possible number of edges between an agent’s neighbours, averaged over all 

agents. The number of an agent’s neighbours is called degree. The mean degree of a 

network md is the average number of all agents’ neighbours. The number of agents on 

the shortest path between two gents is called path length. The network density dens is 

defined as 
2𝑚

𝑛∗(𝑛−1)
. It describes the relation between existing and possible edges in the 

network which makes it a measure for being sparse. Being sparse is an essential 

property of many social networks as they tend to form relatively small butt dense 

clusters with few global edges between them [19]. Among others, this makes such 

social networks a “small world”, in which all individuals, e.g. independent from 

geographic distances, are separated by only a few edges [20]. Another important 
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peculiarity of social networks is the appearance of hubs as [22] suggested in theory- 

and [21] in an empirical study as they confirmed the appearance of hubs in a real 

organization over time. Hubs are nodes that have a much higher degree than the most 

other nodes. Hubs constitute hierarchy which is a necessary empirical implication of 

social networks. The outcome of actual relationships strongly depends on structural 

network properties [23]. The identification of critical joints in the network such as the 

collaboration of working individuals that are geographically separated and that may 

belong to different functional- and hierarchical positions, is of strategic importance 

for collaboration [24]. 

2.2 Efficiency of Process Models 

The concept of performer networks (PNs) and their efficiency is introduced by [9]. 

Almost every business process needs social collaboration to be efficiently executed 

[12]. The concept of PNs connects the aim of business process management to design, 

model and execute efficient processes with the potential of SNA. Performers are 

agents working on process functions with a set of capabilities in a PN. Capabilities for 

this study are simplified as a mapping between a process function and a number 

indicating the extent of being capable/efficient to work at this function.  

 

Figure 1. An example PN fragment around a PM 

PNs represent a minimal topology of co-workership around business processes in an 

organization. PNs are formalized as social networks in which exist two kinds of 

edges: social edges that connect performers and functional edges that connect 

performers with process functions (assigned_nodes). An example PN fragment 

around a PM is presented in figure 1. The blue edges between the performers (named 

nodes) are social edges and the black edges/arrows between performers and process 
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functions are functional edges. The other edges are process edges, connecting process 

nodes. The efficiency of a PM is the efficiency of the most efficient combination of a 

generated PN and the PM. The efficiency of a PN/PM combination is computed with 

an algorithm based on social network analysis and evolution strategy. Several 

repeated simulations of a work package, processed through the control flow of the 

PM, count how many iterations were needed to complete the whole process. Only 

performers associated to a process function (involved_performers) process the work 

package. They are much faster if they have the proper capability for this function. At 

the same time, neighbours of the performer collaborate which increases the PN 

efficiency PNE. PNE corresponds to the standardized PN efficiency definition of [9]. 

𝑃𝑁𝐸 =  1 − (
𝑚𝑒𝑎𝑛(#𝑛𝑒𝑒𝑑𝑒𝑑𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)

𝑚𝑎𝑥#𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
). PNE is the inverse of the relation between the 

number of needed iterations, averaged over all simulation runs 

𝑚𝑒𝑎𝑛(#𝑛𝑒𝑒𝑑𝑒𝑑𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) and the maximal possible number of iterations. 

𝑚𝑎𝑥#𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 refers to a PN with one incompetent performer assigned to each 

process function. A PN can be generated by every social network generator that 

assigns at least one performer to a process function. The evaluation of PNs in [9] 

implies that a performer topology with hierarchy, short paths and significant 

clustering generates efficient PNs. Their suggested network generator by [11], PN 

generation algorithm and parameters are the basis for our PN generation in 

generatePN (see algorithm 5). 

3 Approach 

For our approach, we consider real-world PMs as event-driven process chains 

which are directed graph structures, consisting of a set of edges that indicates an order 

between a set of nodes. Each node has a label, as a linguistic expression of natural 

language, describing the node’s function. Other (meta) information that might be 

provided is ignored. The fundamental assumption of our approach is that a RM must 

be efficient at least significantly more efficient than the most efficient input PM. We 

want to develop a reference PN from the input PMs entailing at least the topological 

minimum requirements to be efficient around all input PMs. It can be interpreted as a 

reference for positioning and putting people on team tasks for the whole organization 

in which all input PMs are assumed to be executed. Our approach’s advantage is that 

no label matching or PM topology matching has to be considered as prior approaches 

require.  

In this section we describe our approach on a high level. The procedure for the 

development of a RM from a set of input PMs is presented in algorithm 1. It is based 

on an evolutionary strategy which is an optimization driven only by mutating and 

selecting individuals [10]. The mutation rate can be increased every run, if no 

convergence was reached, which allows bigger steps through the solution space. The 

evolutionary strategy itself runs in linear time and can achieve a fitness/solution 

quality convergence to an acceptable solution after only a few iterations. The apparent 

advantage of evolutionary strategy, in contrast to other evolutionary algorithms, is to 

be fast and parallelizable because the population has only to be evaluated once per 

705



iteration. If it becomes foreseeable after many iterations that the individual’s fitness 

will not improve, converges or even impairs, the evolutionary strategy can be run 

again or parallel runs on many processors at the same time can be executed until an 

acceptable solution occurs. The disadvantage on the other hand is that an evolutionary 

strategy can converge towards a local optimum in only few iterations but there is no 

proof that a global optimum will ever be reached [13].  

Every PN is considered as an individual/possible solution. Its efficiency can only 

be seen in connection to a PM / or a set of PMs. The fittest resulting individual is the 

reference PN for the input PMs. In order to ensure reliability, the evolution strategy is 

repeated 1000 times as this meets the limitation of our computing time. We 

circumvent the label matching problem by mutating the individuals. The mutation is a 

random decision about how to arrange information inside an individual. This random 

decision made during the evolution compensates that we have no distinct knowledge 

about the distribution of the decision’s quality. The selection forces the mutation 

quality to become better over many iterations. Therefore, a fitness function is defined 

in algorithm 4 that evaluates the sum of the efficiency of an individual towards all 

input PMs weighted by the inverse of its density. The efficiency of a PN/PM 

combination is evaluated with the procedure by [9]. The additional weight is 

necessary because otherwise a super PN with thousands of performers and functional 

edges would receive the highest fitness. A small/sparse PN with similar efficiency is 

to prefer. The same goes for a RM because the more process nodes a RM comprises, 

the bigger it becomes since there is no matching which would condense multiple 

nodes. As an objective evaluation criterion, a smaller RM with similar efficiency is 

likewise to prefer. “Super-models” with many nodes overloaded a user/modeller and 

prevented him from brining in own ideas [7].  

The development of a RM follows the evolutionary strategy in 

developReferenceModel (algorithm 1): At first, for each PM in the set of input PMs 

Models an efficient PN is generated with generatePN in algorithm 5. Those PNs 

represent the initial population and are only optimized to be efficient for their 

respective PM. The best individual out of this population is picked by the selection 

operator who calculates all individuals’ fitness values and chooses the individual with 

the highest fitness value. This individual is now called best_individual and its fitness 

is best_fitness. In the same step, cur_fitness and minimum_fitness are set to the same 

fitness value. The current individual cur_individual on which the mutation and 

selection operators are applied on is now created and initially set to a copy of 

best_individual. cur_fitness is the fitness of the current individual. The minimum 

fitness minimum_fitness is the fitness that must be significantly exceeded by 

cur_fitness during the evolution strategy (step 5) in which the mutation and selection 

operators drive cur_individual to reach a fitness convergence significantly greater 

than the minimum fitness. The mutation of an individual (algorithm 2) assigns 

random capabilities out of the possible capabilities in the input PMs to a randomly 

chosen portion of performers (between 0 and 100%) and flips their edges. When the 

evolution strategy found a good PN, a RM is derived from it (see 

deriveEfficientModel in algorithm 3): The RM contains all process functions to which 

the performers of the PN are assigned. A process edge between two functions is added 
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if any pair of performers is connected so that the first performer is assigned to the first 

function and the other one to the second function. Conversely, that means that a 

generated PN around the RM is efficient in all combinations with the input PMs.  

The developed RM is to understand as a minimum model that exhibits at least the 

efficiency of the input PMs and simultaneously it has relatively few nodes. By 

extending the fitness function, the resulting RM can be adapted to concrete 

requirements. The final step in the RM development would be to specify the 

performers in the real organization and bringing the reference PN and the developed 

RM together. The developed RM has to be seen as a combination of a reference PN 

with its corresponding PM. Only this combination can be interpreted and compared. 

This is a comparable constraint to a RM developed with the help of a label matching 

as that RM can only be used if the matching is of suitable quality which is subjective 

and difficult to measure.  

 
Algorithm 1: Development of a RM: 

developReferenceModel(Models) 

Input: Models, A set of process models     Output: A RM 
1. Let best_individual be a PN = pn that maximizes fitness(pn, Models) with 

pn = generatePN(m) for each PM m ∈ Models 
2. best_fitness = cur_fitness = minimum_fitness = fitness(best_individual, Models) 

3. cur_individual = best_individual 
4. Repeat until convergence of cur _fitness >> minimum_fitness: 

a. mutate(cur_individual, mutation_rate, Models) 

b. cur_fitness = fitness(cur_individual, Models) 
c. If cur_fitness > best_fitness Then: 

i. best_individual = cur_individual 
ii. best_fitness = fitness(best_individual, Models) 

5. return deriveEfficientModel(best_individual) 

 
Algorithm 2: Mutation of a PN: mutate(PN, mutation_rate, Models) 

Input: A PN, PN, Models and mutation_rate in [0;1] 
1. portion = a set with (mutation_rate * 100%) of PN.performers 

2. For Each performer in portion Do: 

a. performer.capabilities = random capabilities from Models 

3. For Each edge (p1, p2) with p1,p2 ∈ portion Do: 
a. flip edge (p1, p2) 

 
Algorithm 3: Deriving an Efficient PM from a PN: 

deriveEfficientModel(PN) 

Input: A PN, PN    Output: A PM 
1. M = empty PM 
2. M.add_nodes(PN.assigned_process.functions) 

3. For Each edge (p1, p2) In PN.social_edges Do: 

a. For Each (n1, n2) ∈ (p1.assigned_nodes, p2.assigned_nodes) Do: 
i. If there is at least one edge (ip1, ip2) in  

(n1.involved_performers, n2.involved_performers) Then: 
1. M.add_edge(n1, n2) 

4. M.delete_unconnected_nodes() 

5. return M 

 

Algorithm 4: Fitness of a PN: fitness(PN, Models) 

Input: A PN, PN    Output: A numeric fitness 
1. return ∑ 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑃𝑁, 𝑚) ∗ (1 − 𝑑𝑒𝑛𝑠(𝑃𝑁)) for each m in Models 
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Algorithm 5: Efficient PN Generation around a PM Based on [9]: generatePN(PM) 

Input: A PM, PM    Output: A PN 
1. let PN be a random social network 

2. assign PN.performers to random capabilities from PM 

3. assign PN.performers to random process functions from PM 
4. simulate PN around PM 

5. Repeat 1-4 until PN.efficiency reaches a local optimum after an adequate number of iterations 

6. return PN 

4 Validation of Concept 

4.1 Experimental Design 

The validation of concept elucidates its potential and applicability. Herby, the concept 

approach is validated to be able to reproduce its results (reliability), to explain the 

increase of result quality (intern validity) and to produce a result that is 

generalizable/transferable (extern validity) [8]. For that purpose, we implemented our 

approach within the “Refmod-miner” framework which is a prototypical software 

platform (http://refmod-miner.dfki.de/). All algorithms described in the approach 

section were implemented in Java, the used network generators and SNA algorithms 

in section 2.1 were taken from the Python library NetworkX 1.11. The hardware 

configuration on which the implementation of our approach was executed involves an 

Intel(R) Core(TM) i7-3610QM CPU @ 2.30GHz and 8GB of RAM. 

We provide three evaluation scenarios in which we demonstrate the reliability, 

intern validity and extern validity of our approach. The scenarios rely on three 

different real-world knowledge-based domains and two different languages, German 

and English. The three scenarios cover S1: 5 knowledge transfer PMs from 

knowledge management in outsourcing relationships and knowledge progress control 

[34], S2: 10 PMs created during the workshop for modelling in higher education 

(MoHoL 2016) [35]. S3: 7 PM variants/solutions about business trip admission for 

business informatics assignments in exams at a German university [36]. For each 

scenario, also a gold RM is provided, made by a domain expert, whose execution 

comes to an exemplary result comparing to the models in its scenario. For example, in 

S2, at the end, a customer is informed and in S3, a car for a business trip is ordered. 

PM properties, such as the sum, minimum value, first, second and third quartile and 

the maximum value for the number of nodes, start nodes, number of process edges 

and graph density, are presented in table 1.  

Table 1. Overview over PM metrics: sum, minimum, maximum and quartiles 

S1|S2|S3 sum min q25 median q75 max 

nodes 194|187|264 18|15|19 22|17|36 28.5|18.5|41 35|19|43 62|26|43 

start nodes 6|9|11 1|1|1 1|1|1 1|1|2 1|1|2 1|1|2 

edges 221|200|280 23|17|20 23|18|38 30|20.5|44 39|21|45 76|25|46 

density in % 26|62|21 2|4|3 3|6|3 4|6|3 5|7|3 8|8|6 
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As described in the approach, our prototypical concept implementation runs 

developReferenceModel(Models) 1000 times. The mutation rate was set to 0.2 as this 

rate indicated significantly better results than 0.1, 0.3 and 0.4 in the first 10 runs. For 

each scenario corpus, each evaluation of PNs is repeated 100 times, and records these 

topological properties of the evolving individuals in every iteration: num_per (number 

of performers), md (average performer degree), CC (average clustering coefficient), 

dens (the PN density), minimum_fitness (defined in developReferenceModel as the 

fitness of the best PN for the input PMs, respectively the best initial individual 

(remains constant during the algorithm run), cur_fitness (fitness of the actual evolving 

individual), best_fitness (fitness of the present best individual). The fitness of the 

respective gold RM gold_fitness is measured to ensure that the gold RMs are 

comparable to our generated models. The fitness of a gold RM is evaluated by the 

same procedure as the minimum fitness is calculated, namely by the fitness sum of its 

most efficient PN towards all input PMs.  

4.2 Evaluation 

The runtime of developReferenceModel took on average 15 seconds per run. Runs in 

scenario S2 took on average 20% longer than the others and runs in S3 took on 

average 7% longer than S1. One iteration took between 0.25 and 2 seconds. The 

fitness of evolving individuals increases with the number of iterations in one run for 

reaching cur_fitness (#iterations) during the algorithm (p < 0.001) in all scenarios 

which can be observed in figure 2. Each point stands for a run of the PN development 

algorithm (the respective scenario that was run is marked with its own colour). 

 

 

Figure 2. #iterations vs cur_fitness for all scenarios 

709



 

Figure 3. Reference PN with its derived RM for S3 

Table 2. Descriptives for best_fitness over all runs with smallest value (Min), arithmetic mean 

(Mean), standard deviation (SD) and highest value (Max) 

Scenario Min Mean SD Max 

S1 0.84 0.89 0.01 0.92 

S2 0.84 0.88 0.01 0.90 

S3 0.84 0.88 0.01 0.91 

Table 3. Average efficiency over all algorithm runs with standard deviation in brackets 

Scenario best_fitness / minimum_fitness best_fitness / gold_fitness gold_fitness / 

minimum_fitness 

S1 4.67 (0.07) 1.19 (0.04) 3.92 (0.13) 

S2 1.76 (0.02) 1.56 (0.04) 1.13 (0.03) 

S3 6.01 (0.10) 2.58 (0.12) 2.33 (0.10) 

Table 4. Correlations between respective variable and cur_fitness, p < 0.01 

Scenario #iterations num_per md CC dens 

S1 0.86 0.86 -0.90 0.86 -0.88 

S2 0.80 0.80 -0.82 0.77 -0.79 

S3 0.92 0.93 -0.92 0.86 -0.88 
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In no run, more than 42 iterations were needed to reach convergence. As we can 

see in table 2, the mean best reached fitness lies nearer to its maximum than to its 

minimum. The standard deviation of best_fitness amounts to 0.01 for all scenarios. 

All PNs generated from the scenario respective gold RMs have a very low num_per, 

CC and dens with a simultaneously high efficiency and fitness over all input PMs. 

Figure 3 presents the fittest PN together with its derived PM, which we see as RM for 

all input PMs in S3. The figure contains process functions and process edges of the 

RM, performers of the reference PN and the related functional as well as social edges. 

All edges are undirected indicating mutual relations. Nodes with numbers are 

generated performers and the others with blue boxes are process functions. Black 

curves are social edges, red curves are process edges and orange curves are functional 

edges. Size and colour intensity of nodes and edges indicate the strength of their 

degrees. For reasons of clarity and comprehensibility only performers and process 

functions with a degree greater than 2 are plotted. In table 3, the average efficiency of 

all algorithm runs is presented. The average efficiency is the ratio between 

best_fitness and minimum_fitness of a run, averaged over all runs. The same applies 

for the relations between best_fitness and gold_fitness and gold_fitness and 

minimum_fitness. As an example, the fitness of the most efficient evolved PN in S3 

was 2.58 higher than the respective gold PN and 6.01 times higher than the highest 

fitness of all individuals from the initial population (minimum_fitness). The fitness of 

the gold PN was 2.33 times greater than the minimum fitness. The relation between 

the fitness of the gold PN and the best initial individual was 2.33. Each standard 

deviation is significantly lower than a tenth of the corresponding average relation 

which speaks for a sufficient number of algorithm runs for this evaluation.  

4.3 Discussion 

The mutation rate of 0.2 reached a fitness convergence in all scenarios. Maximal 5 

runs were needed to find an acceptable individual. The degree distributions of all 

efficient PNs around the gold RM and the best evolved PN, for all scenarios show the 

existence of hubs. Also, those PNs exhibit a significant but low clustering and 

density. The existence of hubs is an evidence for hierarchy which means that 

teams/clusters have single members that are much more central (between more 

people) than others [22]. This finding seems to be a condition for efficiency which is 

also confirmed by [9] for knowledge working processes. The number of performers 

correlates with the fitness over many iterations which means that more performers 

make the evolving PN more efficiently but this effect is compensated by the negative 

influence of the mean degree. All correlations in table 4 are stable over the scenarios 

in the meaning of their equal sign. The topological PN properties density, clustering 

and mean degree seem to be fitness drivers. For the approach’s reliability pleads this 

stability after 1000 repetitions of the algorithm and of the repeated 

generation/evaluation of each PN.  

According to our experimental design, we see the intern validity as confirmed by 

the significant fitness increase towards the minimum fitness for all scenarios over all 

runs (h0: cur_fitness < minimum_fitness; p < 0.001). Also there is a significant 
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correlation between the number of iterations and the fitness (p < 0.001). Our 

algorithm so has an ascertainable influence on the evolvement of better individuals. 

For the extern validity, we tested the significant fitness increase towards the fitness of 

the gold reference PNs for all scenarios over all runs (h0: cur_fitness < gold_fitness; p 

< 0.001). The relation between the gold reference PN and the minimum fitness was 

always significantly greater than 1.0. That is an assertive indicator for our algorithm 

to be able to generate efficient reference PNs for various scenarios. All gold RMs 

were evaluated to be highly efficient and fit. This speaks for the validity of our 

approach because arbitrary models out of the initial population are significantly less 

efficient (h0: fitness(generatePN(m), Models) > fitness(generatePN (gold_PM), 

Models) for each PM m in the input PMs Models and the respective gold RM; p < 

0.01). That means that the generated PN around the gold RM is efficient for all input 

PMs. Considering the low density and the random assignment of capabilities to 

performers in an efficient generated PN, its performers have only the most critical 

capabilities to work on the most critical process functions over all input PMs. This 

also means that the gold RMs’ efficiency can be compared to other RMs for the input 

PMs which makes our fitness function a valid indicator for the quality of a RM.  

The advantage of our approach is that the RMs can be generated valid over 

different domains. The proposed PN/RM combination describes a minimum topology 

of performers and their assigned process functions that is efficient towards the set of 

given input PMs. This proposed PN and RM can be adapted for specific stated 

requirements such as pre-given teams or pre-assigned performers to certain process 

functions. For a real environment, their efficiency comparing to other team/hierarchy 

constellations can then be simulated and evaluated. The RM in figure 3, as an 

example, indicates that the work flow between “Booking company car”, “Ordering 

rental car“ and “Checking the decision” is most critical for the efficiency of all 

process variants in S3 as they have the highest degrees of all process functions which 

makes them central in the RM. These process functions lie on critical paths in most 

process variants in S3, in the meaning of paths that reach from start nodes to end 

nodes and lie on many other paths at the same time. For that reason, most of all hub 

performers, such as “Kirk” “Jeremiah” and “Heath”, were placed to work with their 

subordinated teams at this process functions. This can be interpreted as a 

recommendation or reference for a modeller to focus on needed capabilities for this 

process region when positioning real personal, e.g. at checking the decision for 

booking a car.  

Limitations: Our approach focusing only on PN/PM topology is quite abstract and 

based on simplified assumptions about real processes and organizations. 

Organizations in our approach only consist of a set of performer networks and PMs. 

Their execution environment, social behaviour, resource allocation, communication- 

and production/processing capacities are not considered. In order to demonstrate the 

potential of our approach, the implemented algorithm produces quickly an acceptable 

result but will hardly reach a global optimum. For achieving a much better result, the 

number of performers should be reduced nearly to the number of needed performers 

in the gold RMs. An adapted, organization-specified implementation that considers 
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the environment, the concrete performer capabilities and restrictions for their process 

assignment will be imperative for our approach to be utilized by practitioners.  

5 Conclusion 

In this paper we introduce a new concept for the inductive development of reference 

process models. A social perspective for matching the process flow is applied, rather 

than a traditional label matching which is an inexact and subjective approach. For a 

given set of input PMs, a reference process model is developed, in a few seconds of 

runtime, by including all process functions that are minimum requirements for the 

resulting model to be efficient. The efficiency is measured by the time that simulated 

performers need to complete the process. Three evaluation scenarios are provided to 

evaluate our approach. The evaluation indicates that the generated reference process 

models are at least as efficient as the input PMs and as a RM designed by an expert. 

Our results confirm the potential of our approach as they confirm its extern validity.  

From a theoretical point of view that means that the efficiency of RMs designed by 

experts can be compared to our developed RMs which makes our fitness function a 

valid indicator for the quality of a RM. This in turn implies social collaboration to be 

an important facet for reference modelling. Our approach can be tailored to concrete 

organizations and processes. Practitioners take advantage of pre-selecting efficient 

sub corpora out of many models and identifying maybe invisible lead performers / 

critical junctures, in contrast to the formal structure, constituting efficient structures of 

co-worker ship around process models.  

In future works, we want to provide a method to evaluate the quality of reference 

process models based on this approach. Also we will evaluate event logs of the 

execution of business processes to add a time/cost component to our fitness function 

for developing reference process models.  

References 

1. Becker, J. and Meise, V.: Strategy and Organizational Frame, Process Management. A 

Guide for the Design of Business Processes, J. Becker, M. Kugeler and M. Rosemann 

(eds.), Springer, 2011. 

2. Fettke, P., Loos, P.: Perspectives on Reference Modeling. In: Fettke, P., Loos, P. (eds.) 

Reference Modeling for Business Systems Analysis, pp. 1-20. Idea Group, Hershey, PA., 

2007. 

3. Walter, J., Fettke, P., Loos, P.: How to Identify and Design Successful Business Process 

Models: An Inductive Method. In: Becker, J., Matzner, M. (eds.) Promoting Business 

Process Management Excellence in Russia - Proceedings and Report of the PropelleR 

2012 Workshop, pp. 89-96. Moscow, Russia, 2013. 

4. Becker, J., Schütte, R.: A Reference Model for Retail Enterprises. In: Fettke, P., Loos, P. 

(eds.) Reference Modeling for Business Systems Analysis, pp. 182-205. Idea Group, 

Hershey, PA, 2007. 

713



5. Thaler, T., Hake, P., Fettke, P., Loos, P.: Evaluating the Evaluation of Process Matching 

Techniques. In: Kundisch, D., Suhl, L., Beckmann, L. (eds.) Tagungsband Multikonferenz 

Wirtschaftsinformatik 2014, MKWI-2014, pp. 1600-1612. Paderborn, Germany, 2014 

6. Wasserman, S. and Faust, K., Social network analysis: Methods and applications, volume 

8. Cambridge university press, 1994. 

7. Martens, A., Fettke, P., Loos, P.: A Genetic Algorithm for the Inductive Derivation of 

Reference Models Using Minimal Graph-Edit Distance Applied to Real-World Business 

Process Data. In: Kundisch, D., Suhl, L., Beckmann, L. (eds.) Tagungsband 

Multikonferenz Wirtschaftsinformatik 2014, MKWI-2014, pp. 1613-1626. Paderborn, 

Germany, 2014. 

8. Campbell, DT., and Stanley, JC.: Experimental and quasi-experimental designs for 

research. Ravenio Books, London, 2015. 

9. Sonntag, A., Fettke, P.: Efficiency Of Generated Performer Networks In Collaborative 

Business Process Models. In: IEEE Conference on Business Informatics (CBI). 

Conference on Business Informatics (CBI-16), August 29 - September 1, Paris, France, 

IEEE, 2016. 

10. Beyer, H-G.: The theory of evolution strategies, Springer Science & Business Media, 

2013. 

11. Holme, P. and Kim, B. J.: Growing scale-free networks with tunable clustering, Physical 

Review E, 65(2): 026107, 2002. 

12. Niehaves, B. and Plattfaut, R.: Collaborative business process management: status quo and 

quo vadis, Business Process Management Journal, 17(3): 384–402, 2011. 

13. Beyer, HG, and Schwefel, HP.: Evolution strategies–A comprehensive introduction. 

Natural computing 1.1: 3-52, 2002. 

14. Hevner, A., March, S., Park, J. and Ram, S.: Design science in information systems 

research, MIS Quarterly, Vol. 28 No. 1, pp. 75–105, 2004. 

15. Cross, R., Borgatti, S. P., and Parker, A.: Making invisible work visible: Using social 

network analysis to support strategic collaboration, California management review, 

44(2):25–46, 2002. 

16. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-

Completeness, Freeman, San Francisco, 1979. 

17. Scheer, AW, and Nüttgens, M.: ARIS architecture and reference models for business 

process management. Business Process Management. Springer Berlin Heidelberg, 376-

389, 2000. 

18. Fettke, P. and Loos, P.: Multiperspective evaluation of reference models–towards a 

framework. International Conference on Conceptual Modeling. Springer Berlin 

Heidelberg, 2003. 

19. Barabási, AL.: Network Science. Cambridge University Press. Retrieved 25 May, 2015. 

20. Watts, DJ.: Six degrees: The science of a connected age, WW Norton and Company, New 

York, 2004. 

21. Leskovec, J., Kleinberg, J., and Faloutsos, C.: Graphs over time: densification laws, 

shrinking diameters and possible explanations, In Proceedings of the eleventh ACM 

SIGKDD international conference on Knowledge discovery in data mining, pages 177–

187, ACM, 2005. 

22. Barabási, A.-L. and Albert, R.: Emergence of scaling in random networks, science, 

286(5439):509–512, 1999. 

23. Johnson-Cramer, M. E., Parise, S., and Cross, R. L.: Managing change through networks 

and values, California Management Review, 49(3):85–109, 2007. 

714



24. Cross, R., Borgatti, S. P., and Parker, A.: Making invisible work visible: Using social 

network analysis to support strategic collaboration, California management review, 

44(2):25–46, 2002. 

25. Gottschalk, F., Van Der Aalst, W., Jansen-Vullers, M.: Mining reference process models 

and their configurations. In: Meersman, R., Tari, Z., Herrero, P. (eds.) On the Move to 

Meaningful Internet Systems: OTM 2008 Workshops. Lecture Notes in Computer Science, 

vol. 5333, pp. 263–272. Springer, Berlin, 2008. 

26. Ardalani, P., Houy, C., Fettke, P. and Loos, P.: Towards a Minimal Cost of Change 

Approach for Inductive Reference Model Development, Proceedings of the 21st European 

Conference on Information Systems, AIS, Utrecht, 2013. 

27. Li, C., Reichert, M. and Wombacher, A.: Discovering Reference Models by Mining 

Process Variants Using a Heuristic Approach, in Dayal, U., Eder, J., Koehler, J. and 

Reijers, H. (Eds.), Business Process Management: 7th International Conference, BPM 

2009, Ulm, Germany, September 8-10, 2009. Proceedings, Vol. 5701, Springer, Berlin, 

Heidelberg, pp. 344–362, 2009. 

28. Rehse, JR., Fettke, P. and Loos, P.: A graph-theoretic method for the inductive 

development of reference process models, Software & Systems Modeling, 2015. 

29. Rehse, JR.; Fettke, P.; Peter Loos, P.: An Execution-Semantic Approach to Inductive 

Reference Models Development, in: 24th European Conference for Information Systems 

(ECIS-16), June 12-15, Istanbul, Turkey, Association for Information Systems (AIS), 

2016. 

30. Yahya, B.N., Wu, J.-Z. and Bae, H.: Generation of Business Process Reference Model 

Considering Multiple Objectives, Industrial Engineeering & Management Systems, Vol. 

11 No. 3, pp. 233–240, 2012. 

31. Yahya, B.N. and Bae, H.: Generating Reference Business Process Model Using Heuristic 

Approach Based on Activity Proximity, Intelligent Decision Technologies, Springer, pp. 

469–478, 2011. 

32. Martens, A., Fettke, P. and Loos, P.: Inductive Development of Reference Models Based 

on Factor Analysis, in Thomas, O. and Teuteberg, F. (Eds.), Proceedings Der 12. 

Internationalen Tagung Wirtschaftsinformatik (WI 2015), Vol. 12, Universität Osnabrück, 

Osnabrück, Osnabrück, Germany, pp. 438 – 452, 2015. 

33. Ling, J. and Zhang, L.: Generating Hierarchical Reference Process Model Using 

Fragments Clustering, Asia-Pacific Software Engineering Conference (APSEC). IEEE, 

2015. 

34. Novara, C., and Schwabe, G.: Wissensmanagement in Outsourcingbeziehungen und 

Wissenskulturfortschrittskontrolle, Chur Schweiz, 2006.  

35. Workshop for modeling in higher education (MoHoL 2016), 

http://butler.aifb.kit.edu/MoHoL/?page_id=62 (Accessed: 21.10.2016) 

36. Repository of business informatics exams solutions, 

http://rmm.dfki.de/index.php?site=repository&file=Exams&source=repo (Accessed: 

21.10.2016) 

715

http://butler.aifb.kit.edu/MoHoL/?page_id=62
http://rmm.dfki.de/index.php?site=repository&file=Exams&source=repo



